Patel et al. / Polyhedron 29 (2010) 1918–1924
M.N.
1924
range 1.0–3.5 ꢀ 104 Mꢂ1, which are comparable to the values of
some DNA intercalative polypyridyl Ru(II) complexes, 1.0–
4.8 ꢀ 104 Mꢂ1. All the complexes exhibit good binding and cleav-
age activity. Complexes I, II and VI intercalate more strongly than
complexes III, IV and V. This indicates that complexes I, II and VI
bind to DNA strongly than complexes III, IV and V. The mixture
of the complexes with H2O2 have been found to be efficient oxi-
dants via electrostatic interaction by generating more strand
breaks in plasmid DNA compare to the complexes alone.
[25] A.I. Vogel, Textbook of Quantitative Inorganic Analysis, fourth ed., ELBS and
Longman, London, 1978.
[26] M.N. Patel, M.R. Chhasatia, D.S. Gandhi, Bioorg. Med. Chem. 17 (2009) 5648.
[27] G. Wu, G. Wang, X. Fu, L. Zhu, Molecules 8 (2003) 287.
[28] R.N. Jones, A.L. Barry, T.L. Gaven, J.A. Washington, E.H. Lennette, A. Balows, W.J.
Shadomy, Manual of Clinical Microbiology, fourth ed., vol. 972, American
Society for Microbiology, Washington, DC, 1984.
[29] M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76 (1954)
3047.
[30] A. Wolfe, G.H. Shimer, T. Meehan, Biochemistry 26 (1987) 6392.
[31] G. Cohen, H. Eisenberg, Biopolymers 8 (1969) 45.
[32] J. Sambrook, D.W. Russell, Preparation of Plasmid DNA by Alkaline Lysis with
SDS: Minipreparation, Molecular Cloning, A Laboratory Manual, third ed., vol.
1, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p. 1.
[33] J. Yang, R.N.S. Wong, M.S. Yang, Chem.-Biol. Interact. 125 (2000) 221.
[34] I. Leban, I. Turel, N. Bukovec, J. Inorg. Biochem. (1999) 241.
[35] R.M. Silverstein, F.X. Webster, Spectrometric Identification of Organic
Compounds, sixth ed., John Wiley & Sons, Inc., 2004.
Acknowledgments
We wish to express our gratitude to the Head, Department of
Chemistry, Vallabh Vidyanagar, Gujarat, India for providing neces-
sary laboratory facilities. The authors are also thankful to the UGC
for financial assistance of UGC grant 32-226/2006(SR).
[36] C. Yan, Y. Li, J. Lou, C. Zhu, Syn. React. Inorg. Metal–Org. Chem. 34 (5) (2004)
979.
[37] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fourth ed., Wiley Interscience Publication, 1986.
[38] J.R. Anacona, I. Rodriguez, J. Coord. Chem. 57 (2004) 1263.
[39] G.B. Deacon, R.J. Philips, Coord. Chem. Rev. 23 (1980) 227.
[40] Z.H. Chohan, C.T. Suparan, A. Scozzafava, J. Enz. Inhib. Med. Chem. 20 (3)
(2005) 303.
Appendix A. Supplementary data
[41] N.H. Patel, P.K. Panchal, P.B. Pansuriya, M.N. Patel, J. Macro. Sci.: Part A: Pure
Appl. Chem. 43 (2006) 1083.
[42] P.K. Panchal, P.B. Pansuriya, M.N. Patel, Toxicol. Environ. Chem. 88 (1) (2005)
57.
Supplementary data associated with this article can be found, in
[43] H.M. Parekh, P.K. Panchal, M.N. Patel, J. Therm. Anal. Cal. 86 (3) (2006) 803.
[44] N. Raman, A. Kulandaisamy, K. Jayasubramananian, Polish J. Chem. 76 (2002)
1085.
References
[45] H.M. Parekh, P.K. Panchal, P.B. Pansuriya, M.N. Patel, Polish J. Chem. 80 (2006)
989.
[46] S. Chandra, N. Gupta, L.K. Gupta, Synth. React. Inorg. Metal–Org. Chem. 34 (5)
(2004) 919.
[47] A.B.P. Lever, J. Lewis, R.S. Nyholm, J. Chem. Soc. (1963) 2552.
[48] D.N. Sathyanarayana, Electronic Absorption Spectroscopy and Related
Techniques, first ed., University press (India) Ltd., Hyderabad, 2001.
[49] S.H. Patel, P.B. Pansuriya, M.R. Chhasatia, H.M. Parekh, M.N. Patel, J. Therm.
Anal. Cal. 91 (2) (2008) 413.
[50] Z.H. Chaohan, M. Hassan, K.M. Khan, C.T. Supuran, J. Enz. Inhib. Med. Chem. 20
(2005) 183.
[51] G. Psomas, C. Dendrinou-Samara, P. Philippakopoulos, V. Tangoulis, C.P.
Raptopoulou, E. Samaras, D.P. Kessissoglou, Inorg. Chim. Acta 272 (1998)
24.
[1] L.A. Mitscher, Chem. Rev. 105 (2005) 559.
[2] G. Sheehan, N.S.Y. Chew, in: A.R. Ronald, D.E. Low (Eds.), Fluoroquinolone
Antibiotics, Birkhauser, Basel, Switzerland, 2003, p. 1.
[3] B.M. Lomaestro, G.R. Bailie, Ann. Pharmacother. 25 (1991) 1249.
[4] J.H. Paton, D.S. Reeves, Drugs 36 (1988) 193.
[5] M. Gellert, K. Mizuuchi, M.H. O’Dea, H.A. Nash, Proc. Natl. Acad. Sci. USA 73
(1976) 3872.
[6] L.L. Shen, D.T.W. Chu, Curr. Pharm. Des. 2 (1996) 195.
[7] H.T. Yu, L.H. Hurley, S.M. Kerwin, J. Am. Chem. Soc. 118 (1996) 7040.
[8] G.S. Son, J.A. Yeo, M.S. Kim, J. Am. Chem. Soc. 120 (1998) 6451.
[9] M. Gellert, K. Mizuuchi, M.H. O’Dea, Proc. Natl. Acad. Sci. USA. 74 (1977) 4772.
[10] N.R. Cozarelli, Science 207 (1980) 953.
[11] G. Palu, S. Valisena, G. Ciarrocchi, Proc. Natl. Acad. Sci. USA 89 (1992) 9671.
[12] R.W. Frost, J.D. Carlson, A.J. Dietz, J. Clin. Pharmacol. 29 (1989) 953.
[13] D.E. Nix, W.A. Watson, M.E. Lener, Clin. Pharmacol. Ther. 46 (1989) 700.
[14] R.W. Frost, K.C. Lasseter, A.J. Noe, Antimicrob. Agents Chemother. 36 (1992) 830.
[15] M. Kara, B.B. Hasinoff, D.W. McKay, R.C. Campbell, Br. J. Clin. Pharmocol. 31
(1991) 257.
[16] T. Motoya, M. Niyashit, A. Kawachi, K. Yamada, J. Pharm. Pharmacol. 52 (2000)
397.
[17] N. Farrell, Coord. Chem. Rev. 232 (2002) 1.
[18] G.K. Walkup, S.C. Burdette, S.J. Lippard, R.Y. Tsien, J. Am. Chem. Soc. 122 (2000)
5644.
[19] M . Di Vaira, C. Bazzicalupi, P. Orioli, L. Messori, B. Bruni, P. Zatta, Inorg. Chem.
43 (2004) 3795.
[52] C. Dendrinou-Samara, G. Psomas, C.P. Raptopoulou, D.P. Kessissoglou, J. Inorg.
Biochem. 83 (2001) 7.
[53] A.D. Russell, in: S.S. Block (Ed.), Disinfection, Sterilization and Preservation,
fourth ed., Lea and Febinger, Philadelphia, 1991, p. 27.
[54] H.W. Rossmore, in: S.S. Block (Ed.), Disinfection, Sterilization and Preservation,
fourth ed., Lea and Febinger, Philadelphia, 1991, p. 290.
[55] C. Chulvi, R.M. Oritz, L. Perello, M.A. Romero, Thermochim. Acta 1556 (2)
(1989) 393.
[56] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky,
Coord. Chem. Rev. 84 (1988) 85.
[57] M.T. Carter, M. Rodriguez, A.J. Bard, J. Am. Chem. Soc. 111 (1989) 8901.
[58] M. Baldini, M. Belicchi-Ferrari, F. Bisceglie, P.P. Dall’ Aglio, G. Pelosi, S. Pinelli, P.
Tarasconi, Inorg. Chem. 43 (2004) 7170.
[20] Z.Q. Li, F.J. Wu, Y. Gong, C.W. Hu, Y.H. Zhang, M.Y. Gan, Chin. J. Chem. 25 (2007)
1809.
[21] J. d’Angelo, G. Morgant, N.E. Ghermani, D. Desmaele, B. Fraisse, F. Bonhomme,
E. Dichi, M. Sghaier, Y. Li, Y. Journaux, J.R.J. Sorenson, Polyhedron 27 (2008)
537.
[22] H. Sakurai, Y. Kojima, Y. Yoshikawa, K. Kawabe, H. Yasui, Coord. Chem. Rev.
226 (2002) 187.
[59] J.B. Leepecq, C. Paoletti, J. Mol. Biol. 27 (1967) 87.
[60] J.M. Veal, R.L. Rill, Biochemistry 30 (1991) 1132.
[61] R.P. Hertzberg, P.B. Dervan, J. Am. Chem. Soc. 104 (1) (1982) 313.
[62] D.S. Sigman, D.R. Graham, L.E. Marshall, K.A. Reich, J. Am. Chem. Soc. 102 (16)
(1980) 5419.
[23] Q. Zhou, T.W. Hambley, B.J. Kennedy, P.A. Lay, P. Turner, B. Warwick, J.R. Biffin,
H.L. Regtop, Inorg. Chem. 39 (2000) 3742.
[63] B.K. Santra, P.A.N. Reddy, G. Neelakanta, S. Mahadevan, M. Nethaji, A.R.
Chakravarty, J. Inorg. Biochem. 89 (2002) 191.
[24] N.C. Kasuga, K. Sekino, M. Ishikawa, A. Honda, M. Yokoyama, S. Nakano, N.
Shimada, C. Koumo, K. Nomiya, J. Inorg. Biochem. 96 (2003) 298.
[64] S. Ramakrishnan, M. Palaniandavar, J. Chem. Soc., Dalton Trans. (2008)
3866.