Notes
Journal of Natural Products, 2008, Vol. 71, No. 10 1773
to reversed-phase column chromatography (4 × 50 cm, LiChroprep
RP-18), using MeOH-H2O (gradient elution, from 40:60 to 100%
MeOH), to give 2 (70 mg) and 3 (40 mg), respectively. Fraction 29
(500 mg) was chromatographed on a Sephadex LH-20 column (4.5 ×
80 cm, Sephadex LH-20) eluted with MeOH (3.0 L) to give 5 (400
mg).
OCH2O-3,4), 50.1 (CH, C-7), 44.8 (CH, C-8), 34.6 (CH, C-8′), 32.9
(CH2, C-7′), 20.9 (CH3, ArCOOCH3), 19.9 (CH3, C-9′), 16.8 (CH3,
C-9).
Saucerneol I (4): white powder (MeOH-H2O); mp 138-142 °C;
[R]25 -70.3 (c 0.20, CHCl3); UV (MeOH) λmax (log ε) 235 (4.07),
D
287 (4.00) nm; IR (KBr) νmax 3333, 2968, 2919, 1503, 1488, 1443,
1248, 1040 cm-1; 1H NMR (CDCl3, 250 MHz) δ 6.86 (2H, s, H-2, 2′),
6.77 (2H, d, J ) 8.8 Hz, H-6, H-6′), 6.73 (2H, d, J ) 8.1 Hz, H-5,
H-5′), 5.92 (4H, s, OCH2O × 2), 4.26 (2H, d, J ) 9.9 Hz, H-7, H-7′),
2.44 (2H, m, H-8, H-8′), 0.56 (6H, d, J ) 6.7 Hz, H-9, H-9′); 13C
NMR (CDCl3, 62.9 MHz) δ 147.8 (C, C-3, C-3′), 147.0 (C, C-4, C-4′),
138.4 (C, C-1, C-1′), 120.5 (CH, C-6, C-6′), 107.9 (CH, C-5, C-5′),
107.0 (CH, C-2, C-2′), 100.9 (CH2, OCH2O × 2), 77.1 (CH, C-7, C-7′),
39.1 (CH, C-8, C-8′), 10.4 (CH3, C-9, C-9′); HREIMS m/z 358.1414
[M]+ (calcd for C20H21O5, 358.1416).
Saucerneol F (1): amorphous, brown powder (EtOAc-MeOH); mp
59-61 °C; [R]25D -60.6 (c 0.2, CHCl3); UV (MeOH) λmax (log ε) 234
(4.36), 284 (4.12) nm; IR (KBr) νmax 3468, 2963, 2891, 1505, 1443,
1249, 1038 cm-1; 1H NMR (CDCl3, 900 MHz) δ 6.98 (1H, d, J ) 8.1
Hz, H-5′), 6.92 (1H, br s, H-2′′), 6.89 (1H, br s, H-2′), 6.86 (1H, d, J
) 7.2 Hz, H-6′′), 6.82 (1H, br s, H-2), 6.82 (1H, br d, J ) 6.7 Hz,
H-6′), 6.80 (1H, d, J ) 7.9 Hz, H-5), 6.78 (1H, d, J ) 8.0 Hz, H-5′′),
6.76 (1H, br d, J ) 7.8 Hz, H-6), 5.964 (2H, s, OCH2O-3,4), 5.955
(2H, s, OCH2O-3′′,4′′), 5.43 (1H, d, J ) 6.8 Hz, H-7′), 5.42 (1H, d, J
) 6.9 Hz, H-7), 4.62 (1H, d, J ) 8.4 Hz, H-7′′), 4.10 (1H, dq, J ) 8.1,
6.3 Hz, H-8′′), 3.93 (3H, s, OCH3), 2.28 (1H, ddq, J ) 13.6, 6.8, 6.8
Hz, H-8′), 2.26 (1H, ddq, J ) 13.6, 6.8, 6.8 Hz, H-8), 1.16 (3H, d, J
) 6.2 Hz, H-9′′), 0.71 (3H, d, J ) 6.8 Hz, H-9), 0.70 (3H, d, J ) 6.8
Hz, H-9′); 13C NMR (CDCl3, 150 MHz) δ 150.8 (C, C-3′), 147.9 (C,
C-3′′), 147.7 (C, C-4′′), 147.6 (C, C-3), 146.6 (C, C-4), 146.5 (C, C-4′),
136.9 (C, C-1′), 135.6 (C, C-1), 134.2 (C, C-1′′), 121.3 (CH, C-6′′),
119.5 (CH, C-6), 119.1 (CH, C-5′), 118.9 (CH, C-6′), 110.3 (CH, C-2′),
108.3 (CH, C-5′′), 108.0 (CH, C-5), 107.8 (CH, C-2′′), 107.1 (CH,
C-2), 101.2 (CH2, OCH2O-3,4), 101.1 (CH2, OCH2O-3′′,4′′), 84.2 (CH,
C-8′′, 83.9 (CH, C-7), 83.7 (CH, C-7′), 78.6 (CH, C-7′′), 56.0 (CH3,
OCH3), 44.1 (CH, C-8), 44.0 (CH, C-8′), 17.1 (CH3, C-9′′), 14.9 (CH3,
C-9, C-9′); HRFABMS m/z 543.2000 [M + Na]+ (calcd for
C30H32O8Na, 543.1995).
(-)-Galbacin (4a): [R]25D -41.5 (c 0.03, CHCl3); 1H NMR (CDCl3,
250 MHz) δ 6.89 (2H, s, H-2, H-2′), 6.82 (2H, d, J ) 7.9 Hz, H-6,
H-6′), 6.76 (2H, d, J ) 7.9 Hz, H-5, H-5′), 5.92 (4H, s, OCH2O × 2),
4.59 (2H, d, J ) 8.9 Hz, H-7, H-7′), 1.72 (2H, m, H-8, H-8′), 1.01
(6H, d, J ) 5.7 Hz, H-9, H-9′); 13C NMR (CDCl3, 62.9 MHz) δ 147.7
(C, C-3, C-3′), 146.9 (C, C-4, C-4′), 136.3 (C, C-1, C-1′), 119.7 (CH,
C-6, C-6′), 107.9 (CH, C-5, C-5′), 106.6 (CH, C-2, C-2′), 100.9 (CH2,
OCH2O × 2), 88.3 (CH, C-7, C-7′), 51.0 (CH, C-8, C-8′), 13.8 (CH3,
C-9, C-9′).
Preparation of (S)- and (R)-MTPA Esters of 3 and 4. Mosher’s
esters were prepared according to the reported method.31-33 To
compound 3 (3 mg) in 0.5 mL of CH2Cl2 were added sequentially 0.2
mL of anhydrous pyridine, 0.5 mg of 4-(dimethylamino)pyridine, and
12.5 mg of (R)-(-)-R-methoxy-R-(trifluoromethyl)phenylacetyl chloride
[(R)-MPTA-Cl]. The mixture was left at room temperature overnight
and checked by TLC to determine if the reaction was completed. After
addition of 1 mL of n-hexane, the reaction mixture was passed through
a column (6 × 0.6 cm, silica gel, 230-400 mesh, 9385) with
n-hexane-CH2Cl2 (1:2). The eluate was dried in Vacuo to give the
(S)-MTPA ester of 3. Using (S)-MTPA-Cl, the (R)-MTPA ester of 3
was prepared. The same procedure was repeated with 4 (5 mg) to give
the (S)- and (R)-MTPA esters of 4.
Conversion of 3 and 4 to 3a and 4a. Compounds 3 (6 mg) and 4
(5 mg) were each dissolved in acetyl chloride (3 drops). The solutions
were kept at room temperature for 2 h and, after the addition of H2O,
neutralized with aqueous NaHCO3 and extracted with CH2Cl2. The
organic layer was dried (Na2SO4), filtered, and evaporated. The residue
that dissolved in CH2Cl2 (1-2 mL) was passed through a column (6
× 0.6 cm, silica gel, 230-400 mesh, 9385) with a CH2Cl2 mobile phase.
The eluates were dried in Vacuo to give compounds 3a (3 mg) and 4a
(2 mg).
Cytotoxicity Bioassays. A tetrazolium-based colorimetric assay
(MTT assay) was used to determine the cytotoxicities toward human
colon adenocarcinoma (HT-29), human breast adenocarcinoma (MCF-
7), and human liver hepatoblastoma (HepG-2) cell lines.35
Saucerneol G (2): amorphous, brown powder (MeOH-H2O); mp
41-43 °C; [R]22D +13 (c 0.59, CHCl3); UV (MeOH) λmax (log ε) 229
(4.14), 276 (3.69), 306 (3.88) nm; IR (KBr) νmax 3424, 2954, 2903,
1658, 1504, 1442, 1251, 1173, 1038 cm-1; 1H NMR (CDCl3, 250 MHz)
δ 7.59 (1H, dd, J ) 8.2 1.5 Hz, H-6), 7.45 (1H, d, J ) 1.5 Hz, H-2),
6.86 (1H, d, J ) 8.2 Hz, H-5), 6.49 (1H, s, H-3′), 6.48 (1H, s, H-6′),
6.04 (2H, s, OCH2O), 5.84 (2H, s, OCH2O), 3.17 (1H, m, H-8), 2.60
(1H, d, J ) 13.5 Hz, H-7a′), 2.15 (1H, m, H-8′), 2.00 (1H, dd, J )
13.5, 10.1 Hz, H-7b′), 1.21 (3H, d, J ) 7.2 Hz, H-9), 0.97 (3H, d, J )
6.4 Hz, H-9′); 13C NMR (CDCl3, 62.9 MHz) δ 204.7 (C, C-7), 152.2
(C, C-3), 149.9 (CH, C-5′), 148.3 (C, C-4), 146.7 (C, C-4′), 140.3 (C,
C-1′), 130.6 (C, C-1), 125.1 (CH, C-6), 117.4 (C, C-2′), 110.1 (CH,
C-6′), 108.5 (CH, C-2), 108.0 (CH, C-5), 102.0 (CH2, OCH2O), 100.8
(CH2, OCH2O), 98.6 (CH, C-3′), 46.3 (CH, C-8), 37.7 (CH2, C-7′),
35.6 (CH, C-8′), 16.5 (CH3, C-9), 16.2 (CH3, C-9′); HRFABMS m/z
357.1335 [M + H]+ (calcd for C20H21O6, 357.1338).
Saucerneol H (3): sticky solid (MeOH-H2O); [R]22D -51.9 (c 0.35,
CHCl3); UV (MeOH) λmax (log ε) 231 (4.10), 290 (3.93) nm; IR (KBr)
ν
max 3424, 2954, 2903, 1658, 1504, 1442, 1251, 1173, 1038 cm-1; 1H
NMR (CDCl3, 250 MHz) δ 6.80 (1H, s, H-2), 6.72 (2H, s, H-5, H-6),
6.52 (1H, s, H-6′), 6.33 (1H, s, H-3′), 5.93 (2H, s, OCH2O), 5.84 (2H,
s, OCH2O), 4.27 (1H, d, J ) 9.7 Hz, H-7), 2.81 (1H, dd, J ) 13.3, 3.8,
H-7a′), 2.25 (1H, m, H-7b′), 2.18 (1H, m, H-8′), 1.74 (1H, m, H-8),
0.85 (3H, d, J ) 6.5 Hz, H-9′), 0.56 (3H, d, J ) 7.0 Hz, H-9); 13C
NMR (CDCl3, 62.9 MHz) δ 148.7 (C, C-5′), 147.8 (C, C-3), 147.1 (C,
C-4), 146.2 (C, C-4′), 140.7 (C, C-1′), 138.0 (C, C-1), 120.6 (CH, C-6),
119.0 (C, C-2′), 110.3 (CH, C-6′), 108.0 (CH, C-5), 107.0 (CH, C-2),
101.0 (CH2, OCH2O), 100.8 (CH2, OCH2O), 98.4 (CH, C-3′), 79.5 (CH,
C-7), 43.1 (CH, C-8), 38.0 (CH2, C-7′), 34.0 (CH, C-8′), 14.6 (CH3,
C-9′), 12.0 (CH3, C-9); HREIMS m/z 340.1316 [M - H2O]+ (calcd
for C20H21O5, 340.1311).
Acknowledgment. This work was supported by a Korean Research
Foundation Grant (KRF-2006-005-J01101).
Supporting Information Available: NMR data of 1, 2, 3, 4, 3a,
and 4a. This material is available free of charge via the Internet at
References and Notes
(1) Chung, B. S.; Shin, M. G. Dictionary of Korean Folk Medicine; Young
Lim Sa: Seoul, 1990; p 813.
(7S,8R,9R)-9-(Benzo[d][1,3]dioxol-5-yl)-7,8-dimethyl-6,7,8,9-tet-
(2) Rao, K. V.; Alvarez, F. M. J. Nat. Prod. 1982, 45, 393–397.
(3) Rao, K. V.; Alvarez, F. M. J. Nat. Prod. 1983, 48, 592–597.
(4) Rao, K. V.; Rao, N. S. P. J. Nat. Prod. 1990, 53, 212–215.
(5) Chattopadhyay, S. K.; Rao, K. V. Tetrahedron 1987, 43, 669–678.
(6) Rao, K. V.; Puri, V. N.; Diwan, P. K.; Alvarez, F. M. Pharmacol.
Res. Commun. 1987, 19, 629–638.
(7) Sung, S. H.; Kim, Y. C. J. Nat. Prod. 2000, 63, 1019–1021.
(8) Kubanek, J.; Fenical, W.; Hay, M. E.; Brown, P. J.; Lindquist, N.
Phytochemistry 2000, 54, 281–287.
rahydronaphtho[2,1-d][1,3]dioxol-5-yl acetate (3a): [R]28 +5.8 (c
D
0.03, CHCl3); 1H NMR (CDCl3, 250 MHz) δ 6.70 (1H, d, J ) 7.9 Hz,
H-5), 6.61 (1H, dd, J ) 8.0, 1.5 Hz, H-6), 6.55 (1H, d, J ) 1.4 Hz,
H-2), 6.42 (1H, s, H-3′), 5.89 (2H, s, OCH2O-3,4), 5.68 and 5.58 (each
1H, d, J ) 1.4 Hz, OCH2O-4′,5′), 3.44 (1H, d, J ) 9.2 Hz, H-7), 2.63
(1H, dd, J ) 15.9, 3.3 Hz, H-7a′), 2.30 (3H, s, ArCOOCH3), 2.17 (1H,
dd, J ) 15.9, 10.9 Hz, H-7b′), 1.43 (2H, m, H-8, H-8′), 1.03 (3H, d,
J ) 6.0 Hz, H-9′), 0.93 (3H, d, J ) 6.0 Hz, H-9); 13C NMR (CDCl3,
62.9 MHz) δ 169.7 (C, CH3-CO2Ar), 147.2 (C, C-4′), 145.5 (C, C-5′),
145.3 (C, C-3), 143.4 (C, C-4), 141.3 (C, C-1), 139.5 (C, C-6′), 123.2
(C, C-1′), 122.8 (C, C-2′), 122.0 (CH, C-6), 108.9 (CH, C-2), 107.5
(CH, C-5), 101.6 (CH, C-3′), 101.1 (CH2, OCH2O-4′,5′), 100.7 (CH2,
(9) Rajbhandari, I.; Takamatsu, S.; Nagle, D. G. J. Nat. Prod. 2001, 64,
693–695.
(10) Rao, K. V.; Reddy, G. C. S. J. Nat. Prod. 1990, 53, 309–312.
(11) Wang, E. C.; Shih, M. H.; Liu, M. C.; Chen, M. T.; Lee, G. H.
Heterocycles 1996, 43, 969–975.