FULL PAPERS
Yannick D. Bidal et al.
298 K): d=249.9 (C-Cu), 145.3 (CIV), 134.6 (CIV), 130.1
(CHAr), 124.9 (CHAr), 79.8 (CIV), 59.2 (CIV), 45.7 (CH2), 36.0
(H2CCy), 29.3 (CH-CH3), 29.1 (CH3), 27.2 (CH3CH), 25.2
(H2CCy), 22.5 (H2CCy), 22.2 (CH3CH); elemental analysis
calcd. (%) for C23H35ClCuN: C 65.07, H 8.31, N 3.30; found:
C 64.93, H 8.35, N 3.39.
2006; g) N-Heterocyclic Carbenes in Transition Metal
Catalysis, (Ed.: F. Glorius), Springer, London, 2007;
h) N-Heterocyclic Carbene in Transition Metal Catalysis
and Organocatalysis, (Ed.: C. S. J. Cazin), Springer,
London, 2011; i) A. J. Arduengo, G. Bertrand, Chem.
Rev. 2009, 109, 3209–3210; j) N-Heterocyclic Carbenes –
Effective Tools for Organometallic Synthesis, (Ed.: S. P.
Nolan), Wiley-VCH, Mannheim, 2014.
Chloro[1-(2,6-diisopropylphenyl)-3-(methyl)-4-(4-tert-bu-
tylphenyl)-1,2,3-triazol-5-ylidene]copper(I) (4CuCl): colour-
1
less solid; yield: 438 mg (95%); H NMR (400 MHz, CDCl3,
[2] a) D. G. Gusev, Organometallics 2009, 28, 6458–6461;
b) A. A. Tukov, A. T. Normand, M. S. Nechaev, Dalton
Trans. 2009, 7015–7028; c) T. Drçge, F. Glorius, Angew.
Chem. 2010, 122, 7094–7107; Angew. Chem. Int. Ed.
2010, 49, 6940–6952; d) S. Díez-Gonzµlez, S. P. Nolan,
Coord. Chem. Rev. 2007, 251, 874–883; e) D. Nelson,
S. P. Nolan, Chem. Soc. Rev. 2013, 42, 6723–6753;
f) H. V. Huynh, G. Frison, J. Org. Chem. 2013, 78, 328–
338.
[3] E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, B. P.
Parameswaran, G. Frenking, G. Bertrand, Science 2009,
236, 556–559.
[4] V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G.
Bertrand, Angew. Chem. 2005, 117, 5851–5855; Angew.
Chem. Int. Ed. 2005, 44, 5705–5709.
3
298 K, TMS): d=7.69 (d, JH,H =8.4 Hz, 2H, CHAr), 7.56 (d,
3
3JH,H =8.4 Hz, 2H, CHAr), 7.52 (t, JH,H =8.1 Hz, 1H, CHAr),
3
7.30 (d, JH,H =8.1 Hz, 2H, CHAr), 4.24 (s, 3H, NCH3), 2.31
3
(septet, JH,H =6.8 Hz, 2H, CHCH3), 1.37 (s, 9H, CH3), 1.30
3
3
(d, JH,H =6.8 Hz, 6H, CH3CH), 1.16 (d, JH,H =6.8 Hz, 6H,
CH3CH); 13C-{1H} NMR (101 MHz, CDCl3, 298 K, TMS):
d=166.4 (Cu-Ctriazolylidene), 153.6 (CIV), 148.6 (CIV), 144.9
(CIV), 135.7 (CIV), 131.1 (CHAr), 129.2 (CHAr), 126.5 (CHAr),
124.1 (CHAr), 123.9 (CIV), 37.7 (N-CH3), 34.9 (CIV), 31.2
(CHCH3), 28.6 (CH3), 24.3 (CH3CH), 24.2 (CH3CH); ele-
mental analysis calcd. (%) for C25H33ClCuN3 : C 63.27, H
7.01, N 8.85; found: C 63.15, H 7.16, N 8.72.
General Procedure for Catalysis
[5] G. Guisado-Barrios, J. Bouffard, B. Donnadieu, G. Ber-
trand, Angew. Chem. 2010, 122, 4869–4872; Angew.
Chem. Int. Ed. 2010, 49, 4759–4762.
A vial was charged with the azide (1.00 mmol), alkyne
(1.10 mmol) and the appropriate catalyst (0.5 mol%). The
reaction mixture was stirred at 258C for the appropriate
amount of time in solvent-free conditions. The conversion
was monitored by GC analysis.
[6] V. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller,
G. Bertrand, Science 2006, 312, 722–724.
[7] For early work, see: a) S. Gründemann, A. Kovacevic,
M. Albrecht, J. W. Faller, R. H. Crabtree, Chem.
Commun. 2001, 2274–2275; b) S. Gründemann, A. Ko-
vacevic, M. Albrecht, J. W. Faller, R. H. Crabtree, J.
Am. Chem. Soc. 2002, 124, 10473–10481.
Supporting Information
Synthesis and characterization of ligands and copper com-
plexes 2CuCl–4CuCl, 3D mapping and calculations of %VBur
,
[8] For reviews on non-conventional carbenes, see: a) M.
Albrecht, Chem. Commun. 2008, 3601–3610; b) O.
Schuster, L. Yang, H. G. Raubenheimer, M. Albrecht,
Chem. Rev. 2009, 109, 3445–3478; c) M. Melaimi, M.
Soleilhavoup, G. Bertrand, Angew. Chem. 2010, 122,
8992–9032; Angew. Chem. Int. Ed. 2010, 49, 8810–8849;
d) A. Poulain, M. Iglesias, M. Albrecht, Curr. Org.
Chem. 2011, 15, 3325–3336; e) D. Martin, M. Melaimi,
M. Soleilhavoup, G. Bertrand, Organometallics 2011,
30, 5304–5313; f) K. F. Donnelly, A. Petronilho, M. Al-
brecht, Chem. Commun. 2013, 49, 1145–1159; g) R. H.
Crabtree, Coord. Chem. Rev. 2013, 257, 755–766.
[9] For recent examples, see: a) Y. Han, L. J. Lee, H. V.
Huynh, Organometallics 2009, 28, 2778–2786; b) M. Ig-
lesias, M. Albrecht, Dalton Trans. 2010, 39, 5213–5215;
c) D. Mendoza-Espinosa, G. Ung, B. Donnadieu, G.
Bertrand, Chem. Commun. 2011, 47, 10614–10616;
d) G. Ung, D. Mendoza-Espinosa, J. Bouffard, G. Ber-
trand, Angew. Chem. 2011, 123, 4301–4304; Angew.
Chem. Int. Ed. 2011, 50, 4215–4218; e) G. Ung, D. Men-
doza-Espinosa, G. Bertrand, Chem. Commun. 2012, 48,
7088–7090; f) J. C. Bernhammer, H. V. Huynh, Organo-
metallics 2012, 31, 5121–5130.
synthesis and characterization of substrates and triazoles
1
(6), general procedures for catalysis, H and 13C-{1H} NMR
spectra of all ligands, complexes, substrates and catalysis
products.
Acknowledgements
The authors gratefully acknowledge the Royal Society (Uni-
versity Research Fellowship to CSJC) and the DOE (DE-
FG02-13ER16370) for financial support. We also thank the
EPSCR National Spectrometry Service Centre in Swansea for
HR-MS analyses.
References
[1] a) M. C. Perry, K. Burgess, Tetrahedron: Asymmetry
2003, 14, 951–961; b) C. M. Crudden, D. P. E. Allen,
Coord. Chem. Rev. 2004, 248, 2247–2273; c) F. E. Hahn,
M. C. Jahnke, Angew. Chem. 2008, 120, 3166–3216;
Angew. Chem. Int. Ed. 2008, 47, 3122–3172; d) J. C. Y.
Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya, W. S.
Hwang, I. J. B. Lin, Chem. Rev. 2009, 109, 3561–3598;
e) P. de FrØmont, N. Marion, S. P. Nolan, Coord. Chem.
Rev. 2009, 253, 862–892; f) N-Heterocyclic Carbenes in
Synthesis, (Ed.: S. P. Nolan), Wiley-VCH, Weinheim,
[10] O. Back, M. Henry-Ellinger, C. D. Martin, D. Martin,
G. Bertrand, Angew. Chem. 2013, 125, 3011–3015;
Angew. Chem. Int. Ed. 2013, 52, 2939–2943.
[11] a) M. Heckenroth, E. Kluser, A. Neels, M. Albrecht,
Angew. Chem. 2007, 119, 6409–6412; Angew. Chem.
Int. Ed. 2007, 46, 6293–6296; b) D. F. Wass, T. W. Hey,
3160
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2015, 357, 3155 – 3161