Table 1 Biomimetic dihydroxylation in ionic liquida
Notes and references
Yieldb
85%
‡ At the end of the reaction the NMM is in the form of polar NMO and the
flavin is in a cationic form. Therefore they are not extracted.
Entry
1
Olefin
Product
1 Review: H. C. Kolb, M. S. Van Nieuwenhze and K. B. Sharpless, Chem.
Rev., 1994, 94, 2483–2547.
2 (a) V. VanRheenen, R. C. Kelly and D. F. Cha, Tetrahedron Lett., 1976,
17, 1973–1976; (b) M. Minato, K. Yamamato and J. Tsuji, J. Org.
Chem., 1990, 55, 766–768.
2
3
4
84%
75%
84%
3 (a) C. Döbler, G. M. Mehltretter and M. Beller, Angew. Chem. Int. Ed.,
1999, 38, 3026–3028; (b) C. Döbler, G. M. Mehltretter, U. Sundermeier
and M. Beller, J. Am. Chem. Soc., 2000, 122, 10289–10297.
4 (a) K. Bergstad, S. Y. Jonsson and J.-E. Bäckvall, J. Am. Chem. Soc.,
1999, 121, 10424–10425; (b) S. Y. Jonsson, K. Färnegårdh and J. E.
Bäckvall, J. Am. Chem. Soc., 2001, 123, 1365–1371; (c) S. Y. Jonsson,
H. Adolfsson and J. E. Bäckvall, Org. Lett., 2001, 3, 3463–3466.
5 A. H. Éll, S. Y. Jonsson, A. Börje, H. Adolfsson and J. E. Bäckvall,
Tetrahedron Lett., 2001, 42, 2569–2571.
5
6
88%
79%
6 (a) S. Y. Jonsson, H. Adolfsson and J. E. Bäckvall, Chem. Eur. J., 2003,
9, 2783–2788; (b) A. H. Éll, A. Closson, H. Adolfsson and J. E.
Bäckvall, Adv. Synth. Catal., 2003, 345, 1012–1016.
7 D. V. Deubel, J. Am. Chem. Soc., 2004, 126, 996–997.
8 G. Strukul, Catalytic Oxidations with Hydrogen Peroxide as Oxidant,
Kluwer, Dordrecht, The Netherlands, 1992.
9 Direct reoxidation of Os(VI) in dihydroxylation reactions without ETMs
lead to nonselective reactions and over-oxidation: (a) N. A. Milas and S.
Sussman, J. Am. Chem. Soc., 1936, 58, 1302–1304; (b) N. A. Milas, J.
H. Trepagnier, J. T. Nolan and M. I. Iliopulos, J. Am. Chem. Soc., 1959,
81, 4730–4733.
a Unless otherwise noted 7.2 mg of K2OsO4 (1 mol%), 16 mg of flavin 1 (3
mol%), 28 mL of N-methyl morpholine (NMM) (12 mol%), 2.6 mg of
DMAP and Et4N+OAc2 (TEAA) (0.5 equiv.) were stirred in 0.5 mL of
[bmim]PF6. 1 mL of acetone and 0.25 mL of H2O were added as co-solvents
together with the olefin (2 mmol). 30% H2O2 (3 mmol) was added over 1.5
h followed by 1.5 h of reaction. b Isolated yields.
10 The only immobilization previously done with a H2O2 driven Os-
catalyzed dihydroxylation was on solid support with layered double-
hydroxides (LDHs).10a Jacobs and DeVos have also reported on a
related immobilized system on solid support, but there the Os-catalyzed
dihydroxylation and the NMM recycling by H2O2 had to be run in
separate compartments.10b (a) B. M. Choudary, N. S. Showdari, S.
Madhi. and M. L. Kantam, Angew. Chem. Int. Ed., 2001, 40,
4619–4623; (b) A. Severeyns, D. E. De Vos and P. A. Jacobs, Green
Chem., 2002, 4, 380–384.
Table 2 Yields of diol in dihydroxylation after catalyst recycling
Yielda
Entry
Olefin
Run 1
Run 2
Run 3
Run 4
Run 5
11 (a) C. Bolm and A. Gerlach, Eur. J. Org. Chem., 1998, 21–27; (b) G.
Cainelli, M. Contento, F. Manescalchi and L. Plessi, Synthesis, 1989,
45–47; (c) W. A. Herrmann, R. M. Kratzer, J. Blümel, H. B. Friedrich,
R. W. Fischer, D. C. Apperley, J. Mink and O. Berkesi, J. Mol. Catal.
A, 1997, 120, 197–205.
1
2
84%
88%
84%
76%
90%
90%
71%
73%
89%
84%
12 (a) S. Nagayama, M. Endo and S. Kobayashi, J. Org. Chem., 1998, 63,
6094–6095; (b) S. Kobayashi, M. Endo and S. Nagayama, J. Am. Chem.
Soc., 1999, 121, 11229–11230; (c) S. Kobayashi, T. Ishida and A.
Akiyama, Org. Lett., 2001, 3, 2649–2652; (d) A. Severyns, D. E. De
Vos, L. Fiermans, F. Verpoort, P. J. Grobert and P. A. Jacobs, Angew.
Chem. Int. Ed., 2001, 40, 586–589; (e) B. M. Choudary, N. S. Chowdari,
K. Jyothi, N. S. Kumar and M. L. Kantam, Chem. Commun., 2002,
586–587; (f) B. M. Choudary, N. S. Chowdari, K. Jyothi and M. L.
Kantam, J. Am. Chem. Soc., 2002, 124, 5341–5349.
13 (a) Q. Yao, Org. Lett., 2002, 4, 2197–2199; (b) L. C. Branco and C. A.
M. Afonso, Chem Commun., 2002, 3036–3037; (c) R. Yanada and Y.
Takemoto, Tetrahedron Lett., 2002, 43, 6849–6851; (d) C. E. Song, D.
Jung, E. J. Roh, S. Lee and D. Y. Chi, Chem. Commun., 2002,
3038–3039.
14 (a) S. T. Handy, Chem. Eur. J., 2003, 9, 2938–2944; (b) J. H. Davis Jr.
and P. A. Fox, Chem. Commun., 2003, 1209–1212; (c) C. E. Song,
Chem. Commun., 2004, 1033–1043; (d) C. Baudequin, J. Baudoux, J.
Levillain, D. Cahard, A. C. Gaumont and J. C. Plaquevent, Tetrahedron:
Asymmetry, 2003, 14, 3081–3093.
15 Review: (a) T. Welton, Chem. Rev., 1999, 99, 2071–2083; (b) P.
Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 2000, 39,
3772–3789.
a Isolated yields.
resulted in 66% yield of diol from a-methyl styrene and 35% yield
of diol from trans-2-octene on the first runs, indicating that direct
H2O2 oxidation is possible, but not as efficient as with the flavin-
based system. We also performed some experiments using
VO(acac)2 (2) as ETM, which gave essentially the same results as
with flavin 1 for the styrenes. However, the results were not as
consistent for the other olefins as with the flavin system.
The yields are consistently good over the five reaction cycles,
demonstrating the effective immobilization of the complete
biomimetic system of Scheme 1, where the ETM is flavin 1. The
successful recycling of the triple catalytic system components
allows for a more economic and environmentally friendly process.
It becomes operationally very simple: after extraction of the
product, new olefin and hydrogen peroxide are added to the
immobilized biomimetic system for an additional dihydroxyla-
tion.
16 Review: J. Dupont, R. F. de Souza and P. A. Z. Suarez, Chem. Rev.,
2002, 102, 3667–3692.
17 J. S. Yadav, B. V. S. Reddy and G. Baishy, J. Org. Chem., 2003, 68,
7098–7100.
Financial support from the Swedish Research Council, and the
Swedish Foundation for Strategic Research is gratefully ac-
knowledged.
C h e m . C o m m u n . , 2 0 0 4 , 1 4 9 4 – 1 4 9 5
1495