Macromolecules, Vol. 36, No. 23, 2003
Hyperbranched Poly(ꢀ-caprolactone)s 8637
Con clu sion
valuable discussion about this work during his sabbati-
cal years.
1
. A series of hyperbranched poly(ꢀ-caprolactone)s
(
HPCLs) with homologous structural variation in the
Refer en ces a n d Notes
backbone chains were synthesized through moisture-
sensitive catalyst-free polycondensation with continuous
water removal of AB2 macromonomers, 2,2-bis[ω-hy-
droxy oligo(ꢀ-caprolactone)methyl] propionic acids, hav-
ing different lengths of oligomeric ꢀ-caprolactone seg-
ments. The targeted structural variation, which was the
oligomeric segments consisted of 5, 10, and 20 ꢀ-capro-
lactone monomer units, were confirmed by calculating
the average number of ꢀ-caprolactone units present AB2
(1) Newkome, G. R.; Moorefield, C. N.; V o¨ gtle, F. Dendritic
Molecules: Concepts, Syntheses, Perspectives; VCH Publish-
ers: New York, 1996; Chapter 6.
(2) Tomalia, D. A.; Naylor, A. M.; Goddard, W. A. G., III. Angew.
Chem., Int. Ed. Engl. 1990, 29, 138.
(3) Voit, B. I. Acta Polym. 1995, 46, 87.
(4) Fr e´ chet, J . M. J .; Hawker, C. J .; Gitsov, I.; Leon, J . W. J .
Macromol. Sci., Pure Appl. Chem. 1996, A33, 1399.
(5) Malmstr o¨ m, E.; Hult, A. J . Macromol. Sci., Rev. Macromol.
Chem. Phys. 1997, C37, 555.
1
macromonomer, 〈Nꢀ-CL〉, from H NMR spectra.
(6) Newkome, G. R. Advances in Dendritic Molecules; J AI
Press: Greenwich, CT, 1994; Vol. 1.
2
. The molecular weights of the resulting HPCLs with
respect to their linear counterpart, LPCL, were deter-
mined by (1) end-group analysis on H NMR spectra to
calculate the average number of macromonomer units
incorporated in HPCL, 〈NAB 〉, and (2) size exclusion
(7) Wooley, K. L.; Fr e´ chet, J . M. J .; Hawker, C. J . Polymer 1994,
35, 4489.
1
(
(
8) Trollsås, M.; Hedrick, J . L. Macromolecules 1998, 31, 4390.
9) Skaria, S.; Smet, M.; Frey, H. Macromol. Rapid Commun.
2002, 23, 292.
2
chromatography capable of a multiangle laser light
scattering (SEC-MALLS); the latter was also compared
with a conventional SEC results. The absolute number-
average molecular weights, Mn’s of HPCLs both from
(10) Kwak, S.-Y.; Lee, H. Y. Macromolecules 2000, 33, 5536.
(
(
11) Kwak, S.-Y.; Ahn, D. U. Macromolecules 2000, 33, 7557.
12) Hawker, C. J .; Lee, R.; Fr e´ chet, J . M. J . J . Am. Chem. Soc.
1
991, 113, 4583.
(
13) Bolton, D. H.; Wooley, K. L. Macromolecules 1997, 30, 1890.
(
1) and (2) were reasonably coincident in the range
between ca. 11 000 and 15 000.
. Small-angle X-ray scattering (SAXS) enabled to
(14) Roovers, J . In Encyclopedia of Polymer Science and Engineer-
ing; Mark, H. F., Bikales, N. M., Overberger, C. G., Menges,
G., Eds.; Wiley: New York, 1985; Vol. 2, p 478.
3
(
(
(
(
15) Zimm, B. H.; Stockmayer, W. H. J . Chem. Phys. 1949, 17,
estimate the radii of gyration, Rg, of HPCLs and LPCL,
1
301.
particularly by curve fits of the Zimm plot represented
16) Ihre, J .; Hult, A.; S o¨ derlind, E. J . Am. Chem. Soc. 1996, 118,
6388.
17) Trollsås, M.; Hedrick, J . L.; Mecerreyes, D.; Dubois, Ph.;
J e´ r oˆ me, R.; Ihre, H.; Hult, A. Macromolecules 1997, 30, 8508.
18) B u¨ y u¨ ktanir, E.; K u¨ c¸ u¨ kyavuz, Z. J . Polym. Sci., Part B:
Polym. Phys. 2000, 38, 2678.
2
as 1/I(q) vs q with the Zimm scattering function. Then,
the branching ratio, g, of the mean-square value of Rg
for HPCL to that for LPCL was used to characterize the
relative degree of branching (DB) of HPCLs relative to
LPCL. The DBs of HPCLs were found to be considerably
influenced by the length of the linear olig(ꢀ-caprolac-
tone) segments repeated in the backbone chains; the
shorter the olig(ꢀ-caprolactone) segments, the higher the
DB in the order HPCL-5 > HPCL-10 > HPCL-20. Also
found were the presence of any correlative effect of DB
on the thermal transition and degradation. The melting
transitions of HPCLs were elevated in accordance with
decrease in the number of oligo(ꢀ-caprolactone) seg-
ments and hence increase in the degree of branching,
while vice versa for the thermal degradation.
(19) Huglin, M. B. Light Scattering from Polymer Solutions;
Academic: London, 1972.
20) Malmstr o¨ m, E.; J ohansson, M.; Hult, A. Macromolecules
(
1
995, 28, 1698.
(
(
21) Flory, P. J . J . Am. Chem. Soc. 1952, 75, 2718.
22) Podzimek, S. J . Appl. Polym. Sci. 1994, 54, 91.
(23) Claesson, H.; Malmstr o¨ m, E.; J ohansson, M.; Hult, A. Polymer
002, 43, 3511.
2
(
24) Yoshikawa, K.; Ofuji, N.; Imaizumi, M.; Moteki, Y.; Fujimaki,
T. Polymer 1996, 37, 1281.
(25) Nakamura, Y.; Wan, Y.; Mays, J . W. Iatrou, H.; Hadjichris-
tidis, N. Macromolecules 2000, 33, 8323.
(26) Prosa, T. J .; Bauer, B. J .; Amis, E. J .; Tomalia, D. A.;
Scherrenberg, R. J . Polym. Sci., Part B: Polym. Phys. 1997,
3
5, 2913.
Ack n ow led gm en t. The authors are grateful to the
Ministry of Environment, Republic of Korea, for their
support of this study through the Eco-Technopia 21
project. They also acknowledge Hyperstructured Or-
ganic Materials Research Center (HOMRC) at Seoul
National University, Republic of Korea, for the use of
SEC-MALLS and SAXS equipments. The corresponding
author especially appreciates Professor Colin A. Fyfe at
The University of British Columbia, Canada, for the
(
27) Higgins, J . S.; Beno ´ı t, H. C. Polymers and Neutron Scattering;
Clarendon Press: Oxford, 1994.
(28) Guinier, A.; Fournet, G. Small Angle Scattering of X-Rays;
Wiley: New York, 1955.
29) Magnusson, H.; Malmstr o¨ m, E.; Hult, A.; J ohansson, M.
Polymer 2002, 43, 301.
30) Crescenzi, V.; Manzini, G.; Calzolari, G.; Borri, C. Eur. Polym.
J . 1972, 8, 449.
(
(
MA034170I