ChemSusChem
10.1002/cssc.201700823
COMMUNICATION
dimethylbutadiene. The utilization of [Emim]Cl as solvent
significantly improved the 2,3-dimethylbutadiene selectivity
which can be ascribed to the H-bonding interaction between Cl
Wan, Nat. Commun. 2013, 4, 2141; g) X. Li, D. Wu, T. Lu, G. Yi, H. Su,
Y. Zhang, Angew. Chem. Int. Ed. 2014, 53, 4200; Angew. Chem. 2014,
126, 4284; h) R. Lu, F. Lu, J. Chen, W. Yu, Q. Huang, J. Zhang, J. Xu,
Angew. Chem. Int. Ed. 2016, 55, 249; Angew. Chem. 2016, 128, 257.
a) C. L. Williams, C. C. Chang, P. Do, N. Nikbin, S. Caratzoulas, D. G.
Vlachos, R. F. Lobo, W. Fan, P. J. Dauenhauer, ACS Catal. 2012, 2,
-
and the hydroxyl group of pinacol. Besides, the stabilization of
[
3]
-
the carbocation intermediate by the surrounding anion Cl may
be another reason for the high selectivity. Notably, the good
reusability of the HPW/[Emim]Cl system can reduce the waste
output and production cost. In the second step, D-A reaction of
935; b) P. T. M. Do, J. R. McAtee, D. A. Watson, R. F. Lobo, ACS Catal.
2013, 3, 41; c) C. C. Chang, S. K. Green, C. L. Williams, P. J.
Dauenhauer, W. Fan, Green Chem. 2014, 16, 585; d) C. C. Chang, H.
J. Cho, J. Y. Yu, R. J. Gorte, J. Gulbinski, P. Dauenhauer, W. Fan,
Green Chem. 2016, 18, 1368; e) H. J. Cho, L. Ren, V. Vattipalli, Y.-H.
Yeh, N. Gould, B. Xu, R. J. Gorte, R. Lobo, P. J. Dauenhauer, M.
Tsapatsis, W. Fan, ChemCatChem 2017, 9, 398.
2,3-dimethylbutadiene with acrolein and the following Pd/C-
catalyzed decarbonylation/aromatization cascade were
successfully combined into a one-pot fashion. The intensified
two-step process could efficiently produce renewable OX in 79%
overall yield. Analogously, biomass-derived crotonaldehyde and
pinacol can also serve as the feedstocks for the production of
[
4]
a) M. Shiramizu, F. D. Toste, Chem.‒Eur. J. 2011, 17, 12452; b) Y.-T.
Cheng, G. W. Huber, Green Chem. 2012, 14, 3114; c) J. J. Pacheco, M.
E. Davis, Proc. Natl. Acad. Sci. USA 2014, 111, 8363; d) E. Mahmoud,
J. Y. Yu, R. J. Gorte, R. F. Lobo, ACS Catal. 2015, 5, 6946; e) S.
Thiyagarajan, H. C. Genuino, M. Sliwa, J. C. van der Waal, E. de Jong,
J. van Haveren, B. M. Weckhuysen, P. C. A. Bruijnincx, D. S. van Es,
ChemSusChem 2015, 8, 3052; f) S. Thiyagarajan, H. C. Genuino, J. C.
van der Waal, E. de Jong, B. M. Weckhuysen, J. van Haveren, P. C. A.
Bruijnincx, D. S. van Es, Angew. Chem. Int. Ed. 2016, 55, 1368; Angew.
Chem. 2016, 128, 1390; g) H. C. Genuino, S. Thiyagarajan, J. C. van
der Waal, E. de Jong, J. van Haveren, D. S. van Es, B. M. Weckhuysen,
P. C. A. Bruijnincx, ChemSusChem 2017, 10, 277; h) S. K. Green, R. E.
Patet, N. Nikbin, C. L. Williams, C. C. Chang, J. Y. Yu, R. J. Gorte, S.
Caratzoulas, W. Fan, D. G. Vlachos, P. J. Dauenhauer, Appl. Catal. B-
Environ. 2016, 180, 487; i) M. Koehle, E. Saraçi, P. Dauenhauer, R. F.
Lobo, ChemSusChem 2017, 10, 91.
1,2,4-trimethylbenzene.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (no. 21690082; 21506213; 21476229),
Dalian Science Foundation for Distinguished Young Scholars
(
no. 2015R005), the Strategic Priority Research Program of the
Chinese Academy of Sciences (XDB17020100), Department of
Science and Technology of Liaoning Province (under contract of
2
015020086-101) and 100-talent project of Dalian Institute of
[
5]
A. M. Niziolek, O. Onel, C. A. Floudas, AIChE J. 2016, 62, 1531.
a) E. J. Corey, R. L. Danheiser, S. Chandrasekaran, J. Org. Chem.
1976, 41, 260; b) J. L. Namy, J. Souppe, H. B. Kagan, Tetrahedron Lett.
Chemical Physics (DICP). Dr. Hu appreciates the Postdoctoral
Science Foundation of China (2015M581365) and the dedicated
grant for methanol conversion from DICP for funding this work.
[6]
1983, 24, 765.
[
[
7]
8]
a) O. C. Slotterbeck, Trans. Electrochem. Soc. 1947, 92, 377; b) F. D.
Popp, H. P. Schultz, Chem. Rev. 1962, 62, 19.
Keywords: Biomass • o-Xylene • Pinacol dehydration • acrolein
a) B. G. Harvey, H. A. Meylemans, J. Chem. Technol. Biotechnol. 2011,
•
decarbonylation and aromatization
86, 2-9; b) H. Luo, L. Ge, J. Zhang, J. Ding, R. Chen, Z. Shi, Bioresour.
Technol. 2016, 200, 111-120.
[
1]
a) G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, Science
[9]
B. Cao, J. Zhang, J. Zhao, Z. Wang, P. Yang, H. Zhang, L. Li, Z. Zhu,
ChemCatChem 2014, 6, 1673.
2
005, 308, 1446; b) G. W. Huber, S. Iborra, A. Corma, Chem. Rev.
006, 106, 4044; c) J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J.
2
[10] L. Liu, X. P. Ye, J. J. Bozell, ChemSusChem 2012, 5, 1162.
[11] a) I. Bucsi, A. Molnar, M. Bartok, G. A. Olah, Tetrahedron 1994, 50,
8195; b) A. C. Cole, J. L. Jensen, I. Ntai, K. L. T. Tran, K. J. Weaver, D.
C. Forbes, J. H. Davis, J. Am. Chem. Soc. 2002, 124, 5962; c) M. A.
Nikitina, I. I. Ivanova, ChemCatChem 2016, 8, 1346.
A. Dumesic, Science 2010, 327, 1110; d) P. Anbarasan, Z. C. Baer, S.
Sreekumar, E. Gross, J. B. Binder, H. W. Blanch, D. S. Clark, F. D.
Toste, Nature 2012, 491, 235; e) M. Mascal, S. Dutta, I. Gandarias,
Angew. Chem. Int. Ed. 2014, 53, 1854; Angew. Chem. 2014, 126,
1
885; f) S. Sankaranarayanapillai, S. Sreekumar, J. Gomes, A. Grippo,
[12] S. S. Wang, G. Y. Yang, Chem. Rev. 2015, 115, 4893.
[13] a) C. Reichardt, Chem. Rev. 1994, 94, 2319; b) C. Reichardt, Green
Chem. 2005, 7, 339.
G. E. Arab, M. Head-Gordon, F. D. Toste, A. T. Bell, Angew. Chem. Int.
Ed. 2015, 54, 4673; Angew. Chem. 2015, 127, 4756; g) Q. Xia, Z. Chen,
Y. Shao, X. Gong, H. Wang, X. Liu, S. F. Parker, X. Han, S. Yang, Y.
Wang, Nat. Commun. 2016, 7, 11162.
[14] a) K. Dong, S. J. Zhang, Chem.‒Eur. J. 2012, 18, 2748; b) K. Dong, S.
Zhang, J. Wang, Chem. Commun. 2016, 52, 6744.
[
2]
a) M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 2014, 114, 1827; b) A.
Fukuoka, P. L. Dhepe, Angew. Chem. Int. Ed. 2006, 45, 5161; Angew.
Chem. 2006, 118, 5285; c) N. Ji, T. Zhang, M. Y. Zheng, A. Q. Wang, H.
Wang, X. D. Wang, J. G. G. Chen, Angew. Chem. Int. Ed. 2008, 47,
[15] a) J. J. Wang, H. Y. Wang, S. L. Zhang, H. H. Zhang, Y. Zhao, J. Phys.
Chem. B 2007, 111, 6181; b) C. Y. Shi, Y. L. Zhao, J. Y. Xin, J. Q.
Wang, X. M. Lu, X. P. Zhang, S. J. Zhang, Chem. Commun. 2012, 48,
4103.
8
510; Angew. Chem. 2008, 120, 8638; d) T. Buntara, S. Noel, P. H.
[16] I. V. Kozhevnikov, K. I. Matveev, Appl. Catal. 1983, 5, 135.
[17] a) P. Lejemble, A. Gaset, P. Kalck, Biomass 1984, 4, 263; b) J. Mitra, X.
Y. Zhou, T. Rauchfuss, Green Chem. 2015, 17, 307.
Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem.
Int. Ed. 2011, 50, 7083; Angew. Chem. 2011, 123, 7221; e) Y. Liu, C.
Luo, H. C. Liu, Angew. Chem. Int. Ed. 2012, 51, 3249; Angew. Chem.
[18]
M. C. Yin, R. H. Natelson, A. A. Campos, P. Kolar, W. L. Roberts, Fuel
2013, 103, 408.
2012, 124, 3303; f) Y. L. Wang, W. P. Deng, B. J. Wang, Q. H. Zhang,
X. Y. Wan, Z. C. Tang, Y. Wang, C. Zhu, Z. X. Cao, G. C. Wang, H. L.
This article is protected by copyright. All rights reserved.