4
514
K. Nemoto et al. / Tetrahedron Letters 50 (2009) 4512–4514
base, sec-BuLi–tert-BuOK, while it was lithiated at the 3-position
10. Jones, G.; Stanforth, S. P. Org. React. 1997, 49, 1.
0
00
00
11. (a) Friedel, C.; Crafts, J. M. Compt. Rend. 1878, 86, 1368; (b) Olah, G. A.; Török,
B.; Joschek, J. P.; Bucsi, I.; Esteves, P. M.; Rasul, G.; Prakash, G. K. S. J. Am. Chem.
Soc. 2002, 124, 11379, and references cited therein; (c) Munshi, P.; Beckman, E.
J. Ind. Eng. Chem. Res. 2009, 48, 1059.
with bulky sec-BuLi–N,N,N ,N ,N -pentamethyldiethylenetriamide
9
a
(
PMDTA). It should also be noted that 1-phenylpyrrole (3c) was
selectively carboxylated at the 2-position, as regiocontrol in the
metallation of 1-arylpyrroles with organolithiums or ate bases
has been a troublesome problem.9
1
2. (a) Suzuki, Y.; Hattori, T.; Okuzawa, T.; Miyano, S. Chem. Lett. 2002, 102; (b)
Hattori, T.; Suzuki, Y.; Miyano, S. Chem. Lett. 2003, 32, 454; (c) Nemoto, K.;
Yoshida, H.; Suzuki, Y.; Morohashi, N.; Hattori, T. Chem. Lett. 2006, 35, 820.
b,21a
13. Typical procedure for the carboxylation (Table 1, entry 8): In a 50 cm3 autoclave
In conclusion, we have shown here that 1-substituted indoles
equipped with a glass inner tube and a magnetic stirring bar were charged
and pyrroles are directly carboxylated with CO
of dialkylaluminum chlorides, which provides an easy access to
-substituted indole-3-carboxylic acids and pyrrole-2-carboxylic
2
in the presence
3
compound 1a (131 mg, 1.00 mmol), toluene (1.0 cm ), and Me
2
AlCl (1.0 M
3
solution in hexane; 1.0 cm ) under nitrogen and the apparatus was purged
with CO by repeated pressurization and subsequent expansion, the final
1
2
pressure being adjusted to 3.0 MPa. After stirring the mixture at room
temperature for 3 h, the reactor was depressurized and the mixture was
quenched with 2 M HCl and extracted with chloroform. The organic layer was
acids. Further studies on the reaction mechanisms are underway.
Acknowledgments
extracted with 0.5 M Na CO3 and the extract was acidified with conc. HCl to
2
liberate the free acid, which was extracted with chloroform. The extract was
dried over MgSO
4
and evaporated to leave a residue, which was purified by TLC
developer to give 1-
This study was supported in part by a Grant-in-Aid for Scientific
Research on a Priority Area ‘Advanced Molecular Transformations
of Carbon Resources’ from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.
(
silica gel) with diethyl ether–hexane (1:1) as
a
14
methylindole-3-carboxylic acid (149 mg, 85%). The exclusive formation of
the 3-carboxylic acid was confirmed by the 1H NMR analysis of the residue left
by the evaporation of the chloroform extract.
1
1
4. Baiocchi, L.; Giannangeli, M. J. Heterocycl. Chem. 1988, 25, 1905.
5. Konishi, K.; Aida, T.; Inoue, S. J. Org. Chem. 1990, 55, 816.
References and notes
16. Okauchi, T.; Itonaga, M.; Minami, T.; Owa, T.; Kitoh, K.; Yoshino, H. Org. Lett.
000, 2, 1485.
2
1
7. Huffman, J. W.; Szklennik, P. V.; Almond, A.; Bushell, K.; Selley, D. E.; He,
1
2
3
.
.
.
Boriskin, Y. S.; Leneva, I. A.; Pécheur, E.-I.; Polyak, S. J. Curr. Med. Chem. 2008, 15,
97.
Yang, Z.; Ney, A.; Cromer, B. A.; Ng, H.-L.; Parker, M. W.; Lynch, J. W. J.
Neurochem. 2007, 100, 758.
H.; Cassidy, M. P.; Wiley, J. L.; Martin, B. R. Bioorg. Med. Chem. Lett. 2005,
9
1
5, 4110.
1
1
8. Huffman, J. W.; Smith, V. J.; Padgett, L. W. Tetrahedron 2008, 64, 2104.
9. (a) Mingoia, Q. Gazz. Chim. Ital. 1930, 60, 509; (b) Boev, V. I.; Denisov, S. P.;
Moskalenko, A. I.; Stamova, L. G.; Gulin, A. V. Russ. J. Gen. Chem. 2000, 70, 1812.
0. Conway, B.; Hevia, E.; Kennedy, A. R.; Mulvey, R. E. Chem. Commun. 2007, 2864.
1. (a) Seggio, A.; Lannou, M.-I.; Chevallier, F.; Nobuto, D.; Uchiyama, M.; Golhen,
S.; Roisnel, T.; Mongin, F. Chem. Eur. J. 2007, 13, 9982; (b) Wunderlich, S. H.;
Knochel, P. Angew. Chem., Int. Ed. 2007, 46, 7685.
(a) Rogers, E. F.; Koniuszy, F. R.; Shavel, J., Jr.; Folkers, K. J. Am. Chem. Soc. 1948,
70, 3086; (b) Hagiwara, K.; Himuro, M.; Hirama, M.; Inoue, M. Tetrahedron Lett.
2
2
2
009, 50, 1035.
4.
5.
6.
7.
8.
Fisher, E.; Jourdan, F. Ber. 1883, 16, 2241.
Ito, Y.; Kobayashi, K.; Saegusa, T. J. Am. Chem. Soc. 1977, 99, 3532.
Hantzsch, A. Ber. 1890, 23, 1474.
Knorr, L. Ber. 1884, 17, 1635.
Park, C. M.; Kim, S. Y.; Park, W. K.; Park, N. S.; Seong, C. M. Bioorg. Med. Chem.
Lett. 2008, 18, 3844.
(a) Fukuda, T.; Mine, Y.; Iwao, M. Tetrahedron 2001, 57, 975, and references
cited therein; (b) Fogassy, K.; Kovács, K.; Keser u} , G. M.; T o} ke, L.; Faigl, F. J. Chem.
Soc., Perkin Trans. 1 2001, 1039, and references cited therein.
2
2
2
2. Naka, H.; Uchiyama, M.; Matsumoto, Y.; Wheatley, A. E. H.; McPartlin, M.;
Morey, J. V.; Kondo, Y. J. Am. Chem. Soc. 2007, 129, 1921.
3. Usui, S.; Hashimoto, Y.; Morey, J. M.; Wheatley, A. E. H.; Uchiyama, M. J. Am.
Chem. Soc. 2007, 129, 15102.
4. L’Helgoual’ch, J.-M.; Bentabed-Ababsa, G.; Chevallier, F.; Yonehara, M.;
Uchiyama, M.; Derdour, A.; Mongin, F. Chem. Commun. 2008, 5375.
9
.