7210 J . Org. Chem., Vol. 61, No. 20, 1996
Ta ble 4. Cop p er (I) Br om id e-Ca ta lyzed Ad d ition of 2 to Ter m in a l Acetylen es
Notes
entrya
acetylenes
temp (°C)
time (h)
CuBr (equiv)b
solvent
product
yield (%)c
ratio (E/Z)d
1
2
3
4
5
6
C6H5-t-Η
C6H5-t-Η
C6H5-t-Η
C6H5-t-Η
4-MeOC6H4-t-H
n-Bu-t-H
0
25
25
25
25
25
48
15
15
15
15
24
1.0
1.0
1.0
0.1
1.0
1.0
DMF
DMF
THF
DMF
DMF
DMF
4a
4a
4a
4a
4b
4c
55
62
18
<5
23
54
86:14
83:17
83:17
NDf
95:5
50:50
a
b
d
Two equivalents of 2 was utilized. Equivalent to 2. c Yield based on acetylene. Determined by NMR (1H and 31P) analysis of crude
products. f Not determined.
Anal. Calcd for C13H17O3PF2: C, 53.78, H, 5.91. Found: C,
53.39, H, 5.86.
Con clu sion
In conclusion we have developed an efficient method
for the stereoselective synthesis of (R,R-difluoroallyl)-
phosphonates through the coupling reaction of [(di-
ethoxyphosphinyl)difluoromethyl]zinc bromide 2 with
alkenyl halides in the presence of cuprous bromide in
DMF. In addition, we have found that this reagent
system is applicable to radical addition of the (difluoro-
methylene)phosphonate moiety to terminal acetylenes.
Further works on applications to the synthesis of poly-
functionalized (difluoromethylene)phosphonates of bio-
logical interest are now in progress.
Dieth yl (Z)-(3-p h en yl-1,1-d iflu or o-2-p r op en yl)p h osp h o-
n a te (Z)-4a : obtained as an oil of a mixture of (Z)- and (E)-
isomers in ratio of 68:32; These isomers could not be separated
by column chromatography on silica gel. Spectroscopic data
corresponding to (Z)-4a contaminated with the E-isomer: 1H
NMR (CDCl3, 300 MHz) δ 7.52-7.28 (5H, m), 7.07 (0.32H, ddt,
J H-H ) 16.2, J H-P ) 3.0, J H-F ) 2.8 Hz), 6.95 (0.68H, dt, J H-H
) 12.9, J H-F ) 3.5 Hz), 6.30 (0.32H, ddt, J H-H ) 16.2, J H-F
)
12.9, J H-P ) 2.9 Hz), 5.76 (0.68H, ddt, J H-H ) 12.9, J H-P ) 2.1,
J H-F ) 17.4 Hz), 4.37-4.17 (4H, m), 1.38 (1.92H, t, J ) 7.1 Hz),
1.34 (4.08H, t, J ) 7.0 Hz); 13C NMR (CDCl3, 100 MHz) δ 138.9
(dt J C-P ) 7.2, J C-F ) 6.5 Hz)*, 134.6*, 129.1*, 128.2*, 127.8*,
119.9 (dt, J C-P ) 13.8, J C-F ) 21.3 Hz)*, 117.3 (dt, J C-P ) 219.2,
J C-F ) 259.8 Hz)*, 64.6 (d, J C-P ) 6.4 Hz)*, 16.2 (d, J C-P ) 5.5
Hz)* (*: signals corresponding to (Z)-4a ); 19F NMR (CDCl3, 376
MHz) δ -45.6 (0.64F, dd, J P-F ) 114.3, J H-F ) 12.9 Hz), -41.09
(2.04F, dd, J H-F ) 17.4 Hz, J P-F ) 112.1 Hz), 31P NMR (CDCl3,
160 MHz) δ 6.42 (0.68P, t, J P-F ) 111.8 Hz), 6.19 (0.32P, t, J P-F
) 114.3 Hz); IR (neat) 1271, 1038 cm-1; MS(EI) m/ z 290 (M+).
High-resolution MS calcd for C13H17O3PF2: 290.0883. Found:
290.0883. Anal. Calcd for C13H17O3PF2: C, 53.78; H, 5.91.
Found: C, 53.95; H, 6.14.
Exp er im en ta l Section
Gen er a l. All reactions were carried out under nitrogen
atmosphere. DMF was dried over molecular sieves (4 Å). THF
was distilled from sodium benzophenone ketyl. Diethyl (bro-
modifluoromethyl)phosphonate (1) was prepared according to ref
24. 1H NMR spectra were recorded at 300 or 400 MHz in CDCl3
using TMS or residual CHCl3 (7.26 ppm) as an internal refer-
ences. 13C NMR(100 or 75 MHz) and 31P NMR (160 MHz) were
taken in CDCl3 using CDCl3 (77.0 ppm) as an internal standard
and 85% H3PO4 as an external standard, respectively, with
broad-band 1H decoupling. 19F NMR spectra (376 MHz) was
measured in CDCl3 using benzotrifluoride (BTF) as an internal
standard.
Gen er a l Exp er im en ta l P r oced u r e for Cu Br -Ca ta lyzed
Rea ction of 2 w ith Alk en yl Ha lid es or Acetylen es. To a
stirred suspension of Zn dust (1.3 g, 20 mmol) in dry DMF (10
mL) was slowly added a solution of 1 (5.34 g, 20 mmol) in DMF
(10 mL). During the addition, an exothermic reaction occurred.
The addition was controlled so that the internal temperature
was maintained at 50-60 °C. After addition was completed,
the solution was stirred at room temperature for an additional
3 h, and then CuBr (3.02 g, 20 mmol) was added in one portion.
The mixture was stirred at the same temperature for 30 min to
give organocopper reagent 3 in DMF. Alkenyl halide or acety-
lene (10 mmol) was added dropwise at room temperature
(exothermic reaction occurred). After the mixture was stirred
at room temperature for the time indicated in Tables 1 and 2,
HCl 2% was added to quench the reaction. Biphasic mixture
was passed through Celite and extracted with Et2O. The extract
was washed with saturated NaHCO3 and brine and dried over
MgSO4. Evaporation of the solvent, followed by chromatographic
purification on silica gel (hexane:EtOAc ) 5:1 to 3:1) gave (R,R-
difluoroallyl)phosphonate 4.
Dieth yl (E)-[3-(4′-m eth oxyp h en yl)-1,1-d iflu or o-2-p r op e-
1
n yl]p h osp h on a te (E)-4b: an oil; H NMR (CDCl3, 400 MHz)
δ 7.37 (2H, d, J ) 8.7 Hz), 6.99 (1H, ddt, J ) 16.1, J ) 2.9, 2.9
Hz), 6.86 (2H, d, J ) 8.7 Hz), 6.13 (1H, ddt, J H-H ) 13.0, J H-P
) 2.9, J H-F ) 16.1 Hz), 4.30-4.20 (4H, m), 3.78 (3H, s), 1.34
(6H, t, J ) 7.1 Hz); 13C-NMR (CDCl3, 100 MHz) δ 160.6, 136.4
(dt J C-P ) 6.1, 10.6 Hz), 128.8, 126.9, 117.6 (dt, J ) 221.7, 259.5
Hz), 116.1 (dt, J ) 21.3, 12.8 Hz), 114.1, 64.5 (d, J C-P ) 6.3 Hz),
55.2, 16.3 (d, J C-P ) 4.9 Hz); 19F NMR (CDCl3, 376 MHz) δ
-44.93 (dd, J H-F ) 13.0 Hz, J P-F ) 116.4 Hz), 31P NMR (CDCl3,
160 MHz) 6.33 (t, J P-F ) 116.4 Hz); IR (neat) 1269, 1035 cm-1
;
MS(EI) m/ z 320 (M+). High-resolution MS calcd for C14H19O4-
PF2: 320.0962. Found: 320.0989.
Dieth yl (E)-(1,1-d iflu or o-2-h exen yl)p h osp h on a te (E)-4c:
1
an oil; H NMR (CDCl3, 300 MHz) δ 6.37-6.21 (1H, m), 5.75-
5.57 (1H, m), 4.33-4.18 (4H, m), 2.22-2.10 (2H, m), 1.49-1.27-
(4H, m), 1.36 (6H, t, J ) 7.1 Hz), 0.90 (3H, t, J ) 7.2 Hz): 13C
NMR (CDCl3, 75 MHz) δ 140.2 (dt, J ) 5.9, 9.9 Hz), 120.6 (dt,
J ) 13.1, 21.1 Hz), 116.9 (dt, J ) 219.2, 256.9 Hz), 64.4 (d, J )
6.7 Hz), 31.7, 30.2, 22.0, 16.3 (d, J ) 5.4 Hz), 13.7; 19F NMR
(CDCl3, 376 MHz) δ -45.3 (dd, J H-F ) 12.4, J P-F ) 115.3 Hz);
31P NMR (CDCl3, 160 MHz) δ 6.52 (t, J P-F ) 115.3 Hz); IR (neat)
1273, 1040 cm-1; MS(EI) m/ z 270 (M+). Anal. Calcd for
C
11H21O3PF2: C, 48.87; H, 7.84. Found: C, 48.60; H, 7.76.
(E)-4-(Dieth ylp h osp h on o)-4,4-d iflu or o-2-bu ten -1-ol THP
1
eth er (E)-4d : an oil; H NMR (CDCl3, 400 MHz) δ 6.40-6.26
(1H, m), 6.04-5.86 (1H, m), 4.26 (1H, t, J ) 3.2 Hz), 4.40-4.28
(1H, m), 4.28-4.16 (4H, m), 4.13-3.98 (1H, m), 3.86-3.74 (1H,
m), 3.54-3.42 (1H, m), 1.90-1.45 (6H, m), 1.43-1.30 (6H, m);
13C NMR (CDCl3, 75 MHz) 135.9 (dt, J C-P ) 5.8 Hz, J C-F ) 9.9
Hz), 121.0 (dt, J C-P ) 13.3 Hz, J C-F ) 21.5 Hz), 116.9 (dt, J C-P
) 219.1, J C-F ) 256.8 Hz), 98.0, 65.3, 64.6 (d, J C-P ) 6.7 Hz),
61.9, 30.3, 25.3, 19.1, 16.3 (d, J C-P ) 5.4 Hz); 19F NMR (CDCl3,
376 MHz) δ -45.9 (d, J P-F ) 113.4 Hz); 31P NMR (CDCl3, 160
Dieth yl (E)-(3-p h en yl-1,1-d iflu or op r op -2-en yl)p h osp h o-
n a te (E)-4a : an oil; 1H NMR (CDCl3, 300 MHz) δ 7.53-7.29
(5H, m), 7.07 (1H, ddt, J H-H ) 16.2, J H-P ) 3.0, J H-F ) 2.8 Hz),
6.30 (1H, ddt, J H-H ) 16.2, J H-F ) 12.9, J H-P ) 2.9 Hz), 4.38-
4.19 (4H, m), 1.38 (6H, t, J ) 7.1 Hz); 13C NMR (CDCl3, 75 MHz)
δ 136.9 (dt, J C-F ) 10.5, J C-P ) 5.9 Hz), 134.2, 129.4, 128.7,
127.3, 118.6 (dt, J C-F ) 21.1, J C-P ) 12.9 Hz), 117.4 (dt, J C-F
257.9, J C-P ) 221.0 Hz), 64.7 (d, J C-P ) 6.7 Hz), 16.3 (d, J C-P
)
)
5.3 Hz); 19F NMR (CDCl3, 376 MHz,) δ -45.6 (dd, J P-F ) 114.3,
MHz) δ 6.20 (t, J P-F ) 113.4 Hz); IR (neat) 1270, 1034 cm-1
;
J H-F ) 12.9 Hz); 31P NMR (CDCl3, 160 MHz) δ 6.19 (t, J P-F
)
MS(EI) m/ z 329 (M+ + 1). Anal. Calcd for C13H23O5PF2: C,-
47.54; H, 7.06. Found: C, 47.15; H, 6.99.
114.3 Hz); IR (neat) 1270, 1039 cm-1; MS(EI) m/ z 290 (M+).
(Z)-4-(Dieth ylp h osp h on o)-4,4-d iflu or o-2-bu ten -1-ol THP
1
eth er (Z)-4d : an oil; H NMR (CDCl3, 300 MHz) δ 6.20-6.08
(23) Hu, C.-M.; Chen, J . J . Fluorine Chem. 1994, 69, 79.
(24) Burton, D. J .; Flynn, R. M. J . Fluorine Chem. 1977, 10, 329.
Mahmood, T.; Shreeve, J . M. Synth. Commun. 1987, 17, 71.
(1H, m), 5.71-5.52 (1H, m), 4.64-4.60 (1H, m), 4.59-4.46 (1H,
m), 4.43-4.20 (5H, m), 3.90-3.80 (1H, m), 3.56-3.46 (1H, m),