10.1002/adsc.201801700
Advanced Synthesis & Catalysis
References
Based on the above results, a plausible mechanism
was proposed (Scheme 4). At the anode, the
electrochemical oxidation of 2I- led to the formation
of I2, which easily generated I- and I+. The α-iodation
of acetophenone tosylhydrazone 1a formed
intermediate A, and the elimination of HI provided
azoalkene B. In these processes, the released iodine
anions could be further oxidized to complete the
cycle of the reaction. S8 was added to azoalkene B to
produce zwitterionic C, which underwent cyclization
that furnished intermediate E. Finally, the elimination
of S7 and TsH led to the formation of the desired
product 3a. At the cathode, reduction occurred to
[1] a) H. Dai, S. Ge, G. Li, J. Chen, Y. Shi, L. Ye, Y. Ling,
Bioorg. Med. Chem. Lett. 2016, 26, 4504–4507; b) F.
Hayat, A. Salahuddin, J. Zargan, A. Azam, Eur. J.
Med. Chem. 2010, 45, 6127-6134; c) L. Chen, Y.-J.
Zhu, Z.-J. Fan, X.-F. Guo, Z.-M. Zhang, J.-H. Xu, Y.-
Q. Song, M. Y. Yurievich, N. P. Belskaya, and V. A.
Bakulev, J. Agric. Food Chem. 2017, 65, 745−751; d)
H. Wang, Z. Yang, Z. Fan, Q. Wu, Y. Zhang, N. Mi, S.
Wang, Z. Zhang, H. Song, F. Liu, J. Agric. Food
Chem. 2011, 59, 628–634; e) I. Cikotiene, E.
Kazlauskas, J. Matuliene, V. Michailoviene, J.
Torresan, J. Jachno, D. Matulis, Bioorg. Med. Chem.
Lett. 2009, 19, 1089–1092; f) T. Balasankar, M.
Gopalakrishnan, S. Nagarajan, Eur. J. Med. Chem.
2005, 40, 728–731;
deliver
hydrogen,
which
completed
the
electrochemical cycle.
In conclusion, we developed a metal- and oxidant-
free electrosynthesis of 1,2,3-thiadiazoles from sulfur
and N-tosylhydrazones. Readily available raw
materials, good yields, and an experimentally
convenient catalytic process make this protocol
practical and attractive. Importantly, the present
electrochemical protocol employs mass free electrons
as reagents to oxidize iodine anion to I2 without using
excess amounts of external oxidant, thereby
providing an environmentally benign method for
diverse iodine-catalyzed transformations that have
conventionally required stoichiometric oxidants. This
electrochemical transformation is being studied
further in our laboratory.
[2] Z. Chen, J. Brown, M. Drees, M. Seger, Y. Hu, Y. Xia,
D. Boudinet, M. McCray, M. Delferro, T. J. Marks,
C.-Y. Liao, C.-W. Ko, Y.-M. Chang, A. Facchetti,
Chem. Mater. 2016, 28, 6390−6400.
[3] a) T. Fan, X. Hu, S. Tang, X. Liu, Y. Wang, H. Deng,
X. You, J. Jiang, Y. Li, D. Song, ACS Med. Chem.
Lett. 2018, 9, 484−489; b) W.-M. Xu, S.-Z. Li, M. He,
S. Yang, X.-Y. Li, P. Li, Bioorg. Med. Chem. Lett.
2013, 23, 5821–5824.
[4] a) W.-G. Zhao, J.-G. Wang, Z.-M. Li, Z. Yang, Bioorg.
Med. Chem. Lett. 2006, 16, 6107–6111; b) S.-X.
Wang, J. Huang, Z.-J. Fan, H. Wang, Y.-F. Fu, N. Mi,
Z.-C. Zhang, H.-B. Song, N. P. Belskaya, V. A.
Bakulev, J. Chem. Crystallogr. 2011, 41, 1348–1354.
[5] H.-W. Cui, S. H. Peng, X.-Z. Gu, H. Chen, Y. He, W.
Gao, F. Lv, J.-H. Wang, Y. Wang, J. Xie, M.-Y. Liu, Z.
F. Yi, W.-W. Qiu, Eur. J. Med. Chem. 2016, 111, 126-
137.
Experimental Section
N‑ tosylhydrazones 1 (0.5 mmol, 1.0 equiv), sulfur 2 (0.6
mmol, 1.2 equiv), and NH4I (0.1 mmol, 20 mol%) were
placed in a 10-mL three-necked round-bottomed flask. The
flask was equipped with a condenser, a RVC (100 PPI, 1
cm × 1 cm × 1.2 cm) anode and a platinum plate (1 cm × 1
cm) cathode. DMAC (6 mL) was added. Electrolysis was
performed at 120 °C using a constant current of 10 mA
until the complete consumption of the substrate (monitored
by TLC, approximately 6 h). The reaction mixture was
cooled to room temperature. Water (30 mL) and ethyl
acetate (30 ml) were added. The phases were separated,
and the aqueous phase was extracted with ethyl acetate (2
× 30 mL). The combined organic solution was dried over
anhydrous MgSO4, filtered, and concentrated under
reduced pressure. The residue was chromatographed
through silica gel elution with ethyl acetate/petroleum
ether to yield product 3.
[6] a) Z. Li, Z. Wu, F. Luo, J. Agric. Food Chem. 2005,
53, 3872–3876; b) Q. Zheng, N. Mi, Z. Fan, X. Zuo,
H. Zhang, H. Wang, Z. Yang, J. Agric. Food Chem.
2010, 58, 7846–7855.
[7] a) Z. J. Fan, Z. K. Yang, H. K. Zhang, N. Mi, H.
Wang, F. Cai, X. Zuo, Q. X. Zheng, and H. B. Song, J.
Agric. Food Chem. 2010, 58, 2630–2636.
[8] a) C. D. Hurd, R. I. Mori, J. Am. Chem. Soc. 1955, 77,
5359-5364; b) O. A. Attanasi, G. Baccolini, C. Boga,
L. D. Crescentini, P. Filippone, F. Mantellini, J. Org.
Chem. 2005, 70, 4033-4037; c) Y. Hu, S. Baudart, J.
A. Porco, Jr., J. Org. Chem. 1999, 64, 1049-1051.
[9] a) L. Wolff, Justus Liebigs Ann. Chem. 1904, 333,
1−21; b) M. Caron, J. Org. Chem. 1986, 51,
4075−4077.
[10] J. C. Sheehan, P. T. Izzo, J. Am. Chem. Soc. 1949, 71,
4059–4062;
[11] a) V. O. Filimonov, L. N. Dianova, K. A. Galata, T. V.
Beryozkina, M. S. Novikov, V. S. Berseneva, O. S.
Eltsov, A. T. Lebedev, P. A. Slepukhin, V. A. Bakulev,
J. Org. Chem. 2017, 82, 4056−4071; b) M. S. Singh,
A. Nagaraju, G. K. Verma, G. Shukla, R. K. Verma, A.
Srivastava, K. Raghuvanshi, Green Chem. 2013, 15,
954–962.
[12] B.-B. Liu, H.-W. Bai, H. Liu, S.-Y. Wang, S.-J. Ji, J.
Org. Chem. 2018, 83, 10281−10288.
[13] a) J. Chen, Y. Jiang, J.-T. Yu, J. Cheng, J. Org. Chem.
2016, 81, 271−275; b) T. Ishikawa, M. Kimura, T.
Acknowledgements
We thank the National Natural Science Foundation of China
(21861006), Guangxi Natural Science Foundation of China
(2016GXNSFEA380001 and 2016GXNSFGA380005) and State
Key Laboratory for Chemistry and Molecular Engineering of
Medicinal Resources (CMEMR2017-A02 and CMEMR2017-A07)
for financial support.
4
This article is protected by copyright. All rights reserved.