Communication
ChemComm
2 (a) A. C. Sather and S. L. Buchwald, Acc. Chem. Res., 2016, 49, 2146;
(b) A. C. Sather, H. G. Lee, V. Y. D. L. Rosa, Y. Yang, P. Mu¨ller and
S. L. Buchwald, J. Am. Chem. Soc., 2015, 137, 13433; (c) H. G. Lee,
P. J. Milner and S. L. Buchwald, J. Am. Chem. Soc., 2014, 136, 3792;
(d) D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. Garcia-Fortanet,
T. Kinzel and S. L. Buchwald, Science, 2009, 325, 1661.
bond fluorination of more complex anilines. We first chose
unsymmetrical azobenzenes with the 2,6-diblocked mesityl group
(Table 1). Thankfully, the C–H bond fluorination of unsymmetrical
azobenzenes afforded similar results in comparison with symmet-
rical azobenzenes (4a–b, 4e, 4h–i, 4l–p, and 4u). Notably, the
recovery of the trimethyl aniline was also feasible in good yield
(4l). Azobenzenes bearing electron-deficient anilines were also
explored and the fluorination exclusively took place at the more
electron-rich aromatic side (4a and 4m). Moreover, C–H bond
difluorination of azobenzenes also took place smoothly with
additional loading of NFSI at elevated temperatures (4s–v). In
addition, late-stage C–H fluorination of estrone-containing complex
azobenzene took place smoothly, affording the o-fluoroaniline
derivative 4w in moderate yield.10,18
In conclusion, a nitrate-promoted selective C–H fluorination
of diverse azobenzenes was established, which provided the
corresponding fluorinated anilines by further reduction. More
importantly, the ligand effect of NOx additives was studied in
detail by employing well-defined aryl-Pd(II)–NOx intermediates.
In addition, DFT calculations showcased that utilizing simple
nitrate/nitrite as an anion ligand significantly decreased the
energy barrier of the C–F bond reductive elimination pathway
from the Pd(IV) intermediate. Utilizing this distinct strategy for
the selective reductive elimination of other challenging
chemical bonds could also be expected in the near future.
G. L. thanks the Fundamental Research Funds for the
Central Universities (DUT18RC(3)002) and the Network and
Information Center of Dalian University of Technology for
computational resources.
´
´
3 (a) S. Vasquez-Cespedes, X. Wang and F. Glorius, ACS Catal., 2018,
8, 242; (b) M. Simonetti, D. M. Cannas, X. Just-Baringo, I. J. Vitorica-
Yrezabal and I. Larrosa, Nat. Chem., 2018, 10, 724; (c) K. Shin, Y. Park,
M.-H. Baik and S. Chang, Nat. Chem., 2017, 10, 218; (d) E. Chong,
J. W. Kampf, A. Ariafard, A. J. Canty and M. S. Sanford, J. Am. Chem.
´
Soc., 2017, 139, 6058; (e) I. M. Pendleton, M. H. Perez-Temprano,
M. S. Sanford and P. M. Zimmerman, J. Am. Chem. Soc., 2016,
138, 6049; ( f ) J. J. Topczewski and M. S. Sanford, Chem. Sci., 2015,
6, 70; (g) N. M. Camasso and M. S. Sanford, Science, 2015, 347, 1218;
(h) J. R. Bour, N. M. Camasso and M. S. Sanford, J. Am. Chem. Soc.,
2015, 137, 8034; (i) A. J. Hickman and M. S. Sanford, Nature, 2012,
484, 177; ( j) J. M. Racowski, N. D. Ball and M. S. Sanford, J. Am. Chem.
Soc., 2011, 133, 18022; (k) L.-M. Xu, B.-J. Li, Z. Yang and Z.-J. Shi,
Chem. Soc. Rev., 2010, 39, 712; (l) T. Furuya, H. M. Kaiser and
T. Ritter, Angew. Chem., Int. Ed., 2008, 47, 5993.
4 (a) R. Szpera, D. F. J. Moseley, L. B. Smith, A. J. Sterling and
V. Gouverneur, Angew. Chem., Int. Ed., 2019, 27, 2; (b) X.-Y. Chen
and E. J. Sorensen, J. Am. Chem. Soc., 2018, 140, 2789; (c) C. Testa,
´
´
E. Gigot, S. Genc, R. Decreau, J. Roger and J.-C. Hierso, Angew.
Chem., Int. Ed., 2016, 55, 5555; (d) C. Chen, C. Wang, J. Zhang and
Y. Zhao, J. Org. Chem., 2015, 80, 942; (e) K. S. L. Chan, M. Wasa,
X. Wang and J.-Q. Yu, Angew. Chem., Int. Ed., 2011, 50, 9081.
´
5 (a) N. M. Camasso, M. H. Perez-Temprano and M. S. Sanford, J. Am.
´
Chem. Soc., 2014, 136, 12771; (b) M. H. Perez-Temprano,
J. M. Racowski, J. W. Kampf and M. S. Sanford, J. Am. Chem. Soc.,
2014, 136, 4097; (c) K. M. Engle, T.-S. Mei, X. Wang and J.-Q. Yu,
Angew. Chem., Int. Ed., 2011, 50, 1478; (d) N. D. Ball, J. W. Kampf and
M. S. Sanford, J. Am. Chem. Soc., 2010, 132, 2878.
6 H. Park, P. Verma, K. Hong and J.-Q. Yu, Nat. Chem., 2018, 10, 755.
7 X. Wang, T.-S. Mei and J.-Q. Yu, J. Am. Chem. Soc., 2009, 131, 7520.
8 (a) Y.-J. Mao, S.-J. Lou, H.-Y. Hao and D.-Q. Xu, Angew. Chem., Int.
Ed., 2018, 57, 14085; (b) X.-Q. Ning, S.-J. Lou, Y.-J. Mao, Z.-Y. Xu and
D.-Q. Xu, Org. Lett., 2018, 20, 2445; (c) S.-J. Lou, Q. Chen, Y.-F. Wang,
D.-Q. Xu, X.-H. Du, J.-Q. He, Y.-J. Mao and Z.-Y. Xu, ACS Catal., 2015,
5, 2846; (d) S.-J. Lou, D.-Q. Xu and Z.-Y. Xu, Angew. Chem., Int. Ed.,
2014, 53, 10330.
Conflicts of interest
9 I. J. S. Fairlamb, Angew. Chem., Int. Ed., 2015, 54, 10415.
10 For detailed information, see the ESI†.
The authors declare no competing financial interests.
11 T. Janecki, J. A. D. Jeffreys, P. L. Pauson, A. Pietrzykowski and
K. J. McCullough, Organometallics, 1987, 6, 1553.
12 M. N. Wenzel, P. K. Owens, J. T. W. Bray, J. M. Lynam, P. M. Aguiar,
C. Reed, J. D. Lee, J. F. Hamilton, A. C. Whitwood and I. J. S.
Fairlamb, J. Am. Chem. Soc., 2017, 139, 1177.
13 C. Testa, J. Roger, P. Fleurat-Lessard and J.-C. Hierso, Eur. J. Org.
Chem., 2019, 233.
References
1 (a) Q. Cheng and T. Ritter, Trends Chem., 2019, 1, 461; (b) Y. Zhu, J. Han,
J. Wang, N. Shibata, M. Sodeoka, V. A. Soloshonok, J. A. S. Coelho and
F. D. Toste, Chem. Rev., 2018, 118, 3887; (c) D. A. Petrone, J. Ye and
M. Lautens, Chem. Rev., 2016, 116, 8003; (d) Y. Zhou, J. Wang, Z. Gu,
˜
14 (a) T. H. L. Nguyen, N. Gigant and D. Joseph, ACS Catal., 2018,
8, 1546; (b) I. Omae, Chem. Rev., 1979, 79, 287.
S. Wang, W. Zhu, J. L. Acena, V. A. Soloshonok, K. Izawa and H. Liu,
Chem. Rev., 2016, 116, 422; (e) C. Ni and J. Hu, Chem. Soc. Rev., 2016,
45, 5441; ( f ) J. He, S. Lou and D. Xu, Chin. J. Chem., 2016, 36, 1218;
(g) J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo,
A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu, Chem. Rev.,
2014, 114, 2432; (h) Y. Li, Y. Wu, G.-S. Li and X.-S. Wang, Adv. Synth.
Catal., 2014, 356, 1412; (i) T. Liang, C. N. Neumann and T. Ritter, Angew.
Chem., Int. Ed., 2013, 52, 8214; ( j) T. M. Beale, M. G. Chudzinski,
15 C. N. Neumann and T. Ritter, Angew. Chem., Int. Ed., 2015, 54, 3216.
16 (a) S. H. Hwang, A. T. Wecksler, G. Zhang, C. Morisseau,
L. V. Nguyen, S. H. Fu and B. D. Hammock, Bioorg. Med. Chem.
Lett., 2013, 23, 3732; (b) N.-C. Emrich, A. Heisig, W. Stubbings,
H. Labischinski and P. Heisig, J. Antimicrob. Chemother., 2010,
65, 2530.
´
´
˜
M. G. Sarwar and M. S. Taylor, Chem. Soc. Rev., 2013, 42, 1667; 17 Y. He, H. Zhao, X. Pan and S. Wang, Synth. Commun., 1989, 19, 3047.
(k) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc. 18 D. E. Yerien, S. Bonesi and A. Postigo, Org. Biomol. Chem., 2016,
Rev., 2008, 37, 320.
14, 8398.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 14458--14461 | 14461