Journal of the American Chemical Society
Article
(28) Yang, X.; Fox, T.; Berke, H. Chem. Commun. 2011, 47, 2053−
2055.
(29) Yang, X.; Fox, T.; Berke, H. Org. Biomol. Chem. 2012, 10, 852−
860.
(55) Luo, Y.; Ohno, K. Organometallics 2007, 26, 3597−3600.
(56) Pun, D.; Lobkovsky, E.; Chirik, P. J. Chem. Commun. 2007,
3297−3299.
(57) (a) Vogt, M.; de Bruin, B.; Berke, H.; Trincado, M.;
(30) Robertson, A. P. M.; Leitao, E. M.; Manners, I. J. Am. Chem. Soc.
2011, 133, 19322−19325.
́
Grutzmacher, H. Chem. Sci. 2011, 2, 723−727. (b) Garcia-Vivo, D.;
̈
Huergo, E.; Ruiz, M. A.; Travieso-Puente, R. Eur. J. Inorg. Chem. 2013,
4998−5008.
(31) Leitao, E. M.; Stubbs, N. E.; Robertson, A. P. M.; Helten, H.;
Cox, R. J.; Lloyd-Jones, G. C.; Manners, I. J. Am. Chem. Soc. 2012, 134,
16805−16816.
(58) Chapman, A. M.; Haddow, M. F.; Wass, D. F. J. Am. Chem. Soc.
2011, 133, 8826−8829.
(32) Yang, X.; Zhao, L.; Fox, T.; Wang, Z.-X.; Berke, H. Angew.
Chem., Int. Ed. 2010, 49, 2058−2062.
(59) Tang, C. Y.; Thompson, A. L.; Aldridge, S. J. Am. Chem. Soc.
2010, 132, 10578−10591.
(33) Staubitz, A.; Soto, A. P.; Manners, I. Angew. Chem., Int. Ed. 2008,
47, 6212−6215.
(60) Duman, S.; Ozkar, S. Int. J. Hydrogen Energ. 2013, 38, 10000−
10011.
(34) Dietrich, B. L.; Goldberg, K. I.; Heinekey, D. M.; Autrey, T.;
Linehan, J. C. Inorg. Chem. 2008, 47, 8583−8585.
(35) Staubitz, A.; Sloan, M. E.; Robertson, A. P. M.; Friedrich, A.;
(61) Zahmakiran, M.; Ozkar, S. Top. Catal. 2013, 56, 1171−1183.
(62) Kim, S.-K.; Han, W.-S.; Kim, T.-J.; Kim, T.-Y.; Nam, S. W.;
́
Mitoraj, M.; Piekos, L.; Michalak, A.; Hwang, S.-J.; Kang, S. O. J. Am.
Schneider, S.; Gates, P. J.; Schmedt auf der Gunne, J.; Manners, I. J.
̈
Chem. Soc. 2010, 132, 9954−9955.
Am. Chem. Soc. 2010, 132, 13332−13345.
(63) Chaplin, A. B.; Weller, A. S. Angew. Chem., Int. Ed. 2010, 49,
(36) Liu, Z.; Song, L.; Zhao, S.; Huang, J.; Ma, L.; Zhang, J.; Lou, J.;
Ajayan, P. M. Nano Lett. 2011, 11, 2032−2037.
581−584.
(64) Butera, V.; Russo, N.; Sicilia, E. Chem.Eur. J. 2011, 17,
(37) Ewing, W. C.; Marchione, A.; Himmelberger, D. W.; Carroll, P.
J.; Sneddon, L. G. J. Am. Chem. Soc. 2011, 133, 17093−17099.
(38) There are also many examples in which main group metals have
been used to dehydrocouple amine−borane adducts. See: (a) Liptrot,
D. L.; Hill, M. S.; Mahon, M. F.; MacDougall, D. J. Chem.Eur. J.
2010, 16, 8508−8515. (b) Hill, M. S.; Kocick-Koln, G.; Robinson, T.
P. Chem. Commun. 2010, 46, 7587−7589. (c) Spielmann, J.; Piesik, D.
F.-J.; Harder, S. Chem.Eur. J. 2010, 16, 8307−8318. (d) Spielmann,
J.; Harder, S. Dalton Trans. 2011, 40, 8314−8319. (e) Appelt, C.;
Slootweg, J. C.; Lammertsma, K.; Uhl, W. Angew. Chem., Int. Ed. 2013,
52, 4256−4259. (f) Hansmann, M. M.; Melen, R. L.; Wright, D. S.
Chem. Sci. 2011, 2, 1554−1559. (g) Crowley, H. J.; Holt, M. S.; Melen,
R. L.; Rawson, J. M.; Wright, D. S. Chem. Commun. 2011, 47, 2682−
2684. (h) Less, R. J.; Simmonds, H. R.; Dane, S. B. J.; Wright, D. S.
Dalton Trans. 2013, 42, 6337−6343.
14586−14592.
(65) Paul, A.; Musgrave, C. B. Angew. Chem., Int. Ed. 2007, 46, 8153−
8156.
́
(66) García-Vivo, D.; Huergo, E.; Ruiz, M. A.; Travieso-Puente, R.
Eur. J. Inorg. Chem. 2013, 28, 4998−5008.
(67) Dallanegra, R.; Chaplin, A. B.; Weller, A. S. Angew. Chem., Int.
Ed. 2009, 48, 6875−6878.
(68) Marziale, A. N.; Friedrich, A.; Klopsch, I.; Drees, M.; Celinski,
V.; Schmedt auf der Gunne, J.; Schneider, S. J. Am. Chem. Soc. 2013,
̈
135, 13342−13355.
̈ ̈
(69) Dinc,̧ M.; Metin, O.; Ozkar, S. Catal. Today 2012, 183, 10−16.
(70) Examples of iron-catalyzed dehydrogenation/dehydrocoupling
of other B−N containing substrates have been reported. For an
example of Fe-catalyzed dehydrogenation of boron−nitrogen hetero-
cycles, see: (a) Luo, W.; Campbell, P. G.; Zakharov, L. N.; Liu, S.-Y. J.
Am. Chem. Soc. 2011, 133, 19326−19329. Also, Fe nanoparticles have
been used for the hydrolytic dehydrogenation of 9 to yield borates.
See: (b) Aranishi, K.; Jiang, H.-L.; Akita, T.; Haruta, m.; Xu, Q. Nano
Res. 2011, 4, 1233−1241. (c) Qiu, F.; Li, L.; Wang, Y.; An, C.; Xu, C.;
Xu, Y.; Wang, Y.; Jiao, L.; Yuan, H. Int. J. Hydrogen Energy 2013, 38,
7291−7297. (d) Wang, H.-L.; Yan, J.-M.; Wang, Z.-L.; Jiang, Q. Int. J.
Hydrogen Energy 2012, 37, 10229−10235. (e) Qiu, F.; Li, L.; Liu, G.;
Wang, Y.; Wang, Y.; An, C.; Xu, Y.; Xu, C.; Wang, Y.; Jiao, L.; Yuan, H.
Int. J. Hydrogen Energy 2013, 38, 3241−3249.
(39) Kawano, Y.; Uruichi, M.; Shimoi, M.; Taki, S.; Kawaguchi, T.;
Kakizawa, T.; Ogino, H. J. Am. Chem. Soc. 2009, 131, 14946−14957.
(40) Kakizawa, T.; Kawano, Y.; Naganeyama, K.; Shimoi, M. Chem.
Lett. 2011, 40, 171−173.
(41) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. Chem.
Commun. 2001, 962−963.
(42) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. Am. Chem.
Soc. 2003, 125, 9424−9434.
(43) Clark, T. J.; Russell, C. A.; Manners, I. J. Am. Chem. Soc. 2006,
128, 9582−9583.
(71) Sewell, L. J.; Lloyd-Jones, G. C.; Weller, A. S. J. Am. Chem. Soc.
2012, 134, 3598−3610.
(44) Sloan, M. E.; Staubitz, A.; Clark, T. J.; Russell, C. A.; Lloyd-
Jones, G. C.; Manners, I. J. Am. Chem. Soc. 2010, 132, 3831−3841.
(45) Dallanegra, R.; Robertson, A. P. M.; Chaplin, A. B.; Manners, I.;
Weller, A. S. Chem. Commun. 2011, 47, 3763−3765.
(46) Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.;
Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 12048−12049.
(47) Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. J. Am. Chem. Soc.
2007, 129, 1844−1845.
(72) Stevens, C. J.; Dallanegra, R.; Chaplin, A. B.; Weller, A. S.;
MacGregor, S. A.; Ward, B.; McKay, D.; Alcaraz, G.; Sabo-Etienne, S.
Chem.Eur. J. 2011, 17, 3011−3020.
(73) Chen, Y.; Fulton, J. L.; Linehan, J. C.; Autrey, T. J. Am. Chem.
Soc. 2005, 127, 3254−3255.
(74) For other relevant studies, see: (a) Johnson, H. C; Robertson, A.
P. M.; Chaplin, A. B.; Sewell, L. J.; Thompson, A. L.; Haddow, M. F.;
Manners, I.; Weller, A. S. J. Am. Chem. Soc. 2011, 133, 11076−11078.
For a study with the related phosphine-borane adducts see
(b) Huertos, M. A.; Weller, A. S. Chem. Sci. 2013, 4, 1881−1888.
(75) It is noteworthy that pentamethylation of the Cp rings (as in
1*) led to a reduction in catalytic activity. Furthermore, it was also of
interest that Fe2(CO)9 (8) was found to be almost completely inactive.
See the Discussion section.
(48) Baker, R. T.; Gordon, J. C.; Hamilton, C. W.; Henson, N. J.; Lin,
P.-H.; Maguire, S.; Murugesu, M.; Scott, B. L.; Smythe, N. C. J. Am.
Chem. Soc. 2012, 134, 5598−5609.
(49) Sonnenberg, J. F.; Morris, R. H. ACS Catalysis 2013, 1092−
1102.
(50) Jiang, Y.; Blacque, O.; Fox, T.; Frech, C. M.; Berke, H.
Organometallics 2009, 28, 5493−5504.
(51) Robertson, A. P. M.; Suter, R.; Chabanne, L.; Whittell, G. R.;
Manners, I. Inorg. Chem. 2011, 50, 12680−12691.
(76) HB(NMe2)2 is observed during dehydrocoupling reactions, and
similar compounds (HB(NR2)2) have been characterized in other
research. For a recent paper detailing some examples, see: Helten, H.;
Robertson, A. P. M.; Staubitz, A.; Vance, J. R.; Haddow, M. F.;
Manners, I. Chem.Eur. J. 2012, 18, 4665−4680.
(52) Friedrich, A.; Drees, M.; Schneider, S. Chem.Eur. J. 2009, 15,
10339−10342.
(53) Vance, J. R.; Robertson, A. P. M.; Lee, K.; Manners, I. Chem.
Eur. J. 2011, 17, 4099−4103.
(77) Recently, Morris et al. reported that FeBr2 was found to
dehydrocouple H3N·BH3 (9) in the presence of KOtBu: see ref 49.
Sonnenberg, J. F.; Morris, R. H. ACS Catalysis 2013, 1092−1102.
(54) Helten, H.; Dutta, B.; Vance, J. R.; Sloan, M. E.; Haddow, M. F.;
Sproules, S.; Collison, D.; Whittell, G. R.; Lloyd-Jones, G. C.;
Manners, I. Angew. Chem., Int. Ed. 2013, 52, 437−440.
3062
dx.doi.org/10.1021/ja410129j | J. Am. Chem. Soc. 2014, 136, 3048−3064