Beilstein J. Org. Chem. 2018, 14, 1885–1889.
7. Yamakado, R.; Mikami, K.; Takagi, K.; Azumaya, I.; Sugimoto, S.;
Matsuoka, S.-i.; Suzuki, M.; Katagiri, K.; Uchiyama, M.; Muranaka, A.
8. Ikeda, A.; Udzu, H.; Zhong, Z.; Shinkai, S.; Sakamoto, S.;
Yamaguchi, K. J. Am. Chem. Soc. 2001, 123, 3872–3877.
CH2–NH and Ar–O–CH2–Ar protons of cage 6 with those of
cage 1 shows respectively downfield and highfield shifts of
around −0.2 ppm and more than +0.8 ppm, respectively [16].
Moreover, the chemical shift differences of the two diastereo-
topic protons of the two AB systems are much greater for 1 than
for 6 with Δδ = 0.38 ppm for the CH2NH and of Δδ = 0.19 ppm
for the Ar–O–CH2–Ar of 1, compared to 0.07 ppm and
0.05 ppm for 6, respectively (Figure 3). This is consistent with a
more rigid structure of cage 1 in solution, as suggested by the
solid-state structure.
9. Malik, A. U.; Gan, F.; Shen, C.; Yu, N.; Wang, R.; Crassous, J.;
Shu, M.; Qiu, H. J. Am. Chem. Soc. 2018, 140, 2769–2772.
10.Sato, H.; Bender, J. A.; Roberts, S. T.; Krische, M. J.
11.Zhang, D.; Martinez, A.; Dutasta, J.-P. Chem. Rev. 2017, 117,
12.Chatelet, B.; Joucla, L.; Padula, D.; Di Bari, L.; Pilet, G.; Robert, V.;
Dufaud, V.; Dutasta, J.-P.; Martinez, A. Org. Lett. 2015, 17, 500–503.
Conclusion
In summary, we have described the synthesis of a new
hemicryptophane organic cage, which adopts a triple helical
structure because of the propeller-like arrangement of its three
linkers. The chirality of the CTV was shown to control that of
the whole helical cage structure, since only P-Δ and M-Λ enan-
tiomers were observed in solid state. NMR studies suggest that
this propeller-like arrangement also occurs in solution. Further
investigations are in progress in order to propagate the chirality
of the CTV to even more remote opposite sites through the for-
mation of such triple helical structures.
13.Gosse, I.; Robeyns, K.; Bougault, C.; Martinez, A.; Tinant, B.;
Dutasta, J.-P. Inorg. Chem. 2016, 55, 1011–1013.
14.Vériot, G.; Dutasta, J.-P.; Matouzenko, G.; Collet, A. Tetrahedron 1995,
15.Perraud, O.; Robert, V.; Gornitzka, H.; Martinez, A.; Dutasta, J.-P.
Angew. Chem., Int. Ed. 2012, 51, 504–508.
16.Long, A.; Perraud, O.; Albalat, M.; Robert, V.; Dutasta, J.-P.;
Martinez, A. J. Org. Chem. 2018, 83, 6301–6306.
Supporting Information
License and Terms
Supporting Information File 1
Procedures for the synthesis of compounds 1–5;
1H, 13C NMR, spectra mass spectra of compound 1 and
crystallographic data.
This is an Open Access article under the terms of the
Creative Commons Attribution License
that the reuse, redistribution and reproduction in particular
requires that the authors and source are credited.
The license is subject to the Beilstein Journal of Organic
Chemistry terms and conditions:
ORCID® iDs
The definitive version of this article is the electronic one
which can be found at:
References
1. Jain, A.; Wang, G.; Vasquez, K. M. Biochimie 2008, 90, 1117–1130.
2. Shoulders, M. D.; Raines, R. T. Annu. Rev. Biochem. 2009, 78,
3. Hamley, I. W. Chem. Rev. 2017, 117, 14015–14041.
4. Pekkanen, A. M.; Mondschein, R. J.; Williams, C. B.; Long, T. E.
Biomacromolecules 2017, 18, 2669–2687.
5. Montero de Espinosa, L.; Meesorn, W.; Moatsou, D.; Weder, C.
Chem. Rev. 2017, 117, 12851–12892.
6. Míguez-Lago, S.; Llamas-Saiz, A. L.; Cid, M. M.; Alonso-Gómez, J. L.
1889