4
76 Letters in Organic Chemistry, 2013, Vol. 10, No. 7
Girija et al.
Ethyl 7-(diethylamino)-2-oxo-2H-chromene-3-carboxy-
Stork, G.; Landesman, H. A new alkylanon of carbonyl com-
pounds. J. Am. Chem. Soc. 1956, 78, 5128-5129; (c) Stork, G.;
Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell,R.The
enamine alkylation and acylation of carbonyl compounds J. Am.
Chem. Soc. 1963, 85, 207-222.
-
1
late (3h); IR (KBr) cm : 3465, 3008, 1716, 1676, 1206, 960,
ꢀ1 1
8
34, 787 cm ; H NMR (DMSO, 300 MHz) ꢂ (ppm): 8.81
s, 1H,CH), 7.62-7.66 (d, 1H, Ar-H), 6.77 (d, 1H, Ar-H),
.54 (s, 1H,Ar-H), 4.25-4.28(q, 2H,CH ), 3.3-3.5(q, 4H,
CH ), 1.23-1.32(t, 3H,CH ), 1.14-1.18 (t, 6H,CH ).
(
6
[3]
[4]
Eder, U.; Sauer, G.; Wiechert, R. New Type of Asymmetric Cycli-
zation to Optically Active Steroid CD Partial Structures. Angew.
Chem., Int. Ed. Engl. 1971, 10, 496-497; (b) Hajos, Z.G.; Parrish,
D.R. Asymmetric synthesis of bicyclic intermediates of natural
product chemistry. J. Org. Chem. 1974, 39, 1615-1621.
2
2
3
3
3
-acetyl-7-(diethylamino)-2H-chromen-2-one (3i); IR
-1
(
KBr) cm :3356., 2966, 1723, 1661, 1560, 1472, 1214, 1186
ꢀ1 1
Buchschacher, P.; Cassal, J.-M.; Furst, A.; Meier,W. Contribution
to the asymmetric synthesis of bicyclic compounds catalysed by
cm ; H NMR (DMSO, 300 MHz) ꢂ (ppm): 8.70 (s, 1H,
CH),7.46 (d, 1H, Ar-H), 6.60 (d, 1H, Ar-H), 6.53(d, 1H,Ar-
optically
active
amino
acids.
Synthesis
of
(S)-2-
H), 3.37 (q, 4H, CH
2
), 2.65 (s,3H, CH
3
), 1.20 (t, 6H, CH
3
);
pyrrolidinepropionic acid and (R)-4-amino-5-phenylvaleric acid.
Helv. Chim. Acta. 1977, 60, 2747-2755.
7
-(diethylamino)-2-oxo-2H-chromene-3-carbonitrile (3j);
[
5]
Danishefsky, S.; Cain, P. Pyridine route to optically active estrone
and 19 norsteroids. J. Am. Chem. Soc. 1975, 97, 5282-5284; (b)
Shimizu, I.; Naito, Y.; Tsuji, J. Synthesis of optically active (+)-19-
nortestosterone by asymmetric bis-annulation reaction Tetrahedron
Lett. 1980, 21, 487-490; (c) Hagiwara, H.; Uda, H. Optically pure
-1
IR (KBr) cm : 3305, 2998, 2230, 1715, 1645, 1297, 958,
ꢀ1 1
7
60 cm ; H NMR (DMSO, 300 MHz) ꢂ (ppm): 8.50 (s, 1H,
CH), 7.80 (s, 1H, Ar-H), 7.73-7.76 (d, 1H, Ar-H), 7.03-7.06
(
d, 1H,Ar-H), 4.13- 4.20 (m, 4H,CH
Ethyl
2 3
), 1.17(t, 6H, CH ).
(
4aS)-(+)-
or
(4aR)-(-)-1,4a-dimethyl-4,4a,7,8-
tetrahydronaphthalene 2,5(3H,6H)-dione and its use in the synthe-
8-hydroxy-2-oxo-2H-chromene-3-carboxylate
ꢀ1
sis of an inhibitor of steroid biosynthesis. J. Org. Chem. 1988, 53,
(
3k); IR (KBr): 3303, 3045, 2984, 1746, 1696, 1611 cm ;
H NMR (DMSO, 300 MHz) ꢂ (ppm): 10.8 (s, 1H .OH),
2
308-2311; (d) Corey, E.J.; Virgil, S.C. Enantioselective total syn-
1
thesis of a protosterol, 3.beta.,20-dihydroxyprotost-24-ene. J. Am.
Chem. Soc. 1990, 112, 6429-6431.
8
.69 (s, 1H,CH), 7.28 (m, 1H, Ar-H), 7.10- 7.19 (m, 2H, Ar-
[
6]
7]
Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. New Strategies
for Organic Catalysis:ꢀ The First Highly Enantioselective Organo-
catalytic DielsꢀAlder Reaction J. Am. Chem. Soc. 2000, 122, 4243-
H), 4.30 (q, 2H, CH
2 3
), 1.32 (t, 3H, CH ),
Ethyl 7-hydroxy-2-oxo-2H-chromene-3-carboxylate(3l);
ꢀ1 1
4
244.
IR (KBr): 3550, 3470, 1739, 1617 cm ; H NMR (DMSO,
00 MHz) ꢂ (ppm): 9.60(s, 1H, OH), 8.67 (s,1H ,CH) 7.75
d, 1H, Ar-H), 6.84 (d, 1H,Ar-H), 6.73 (s, 1H,Ar-H), 4.20 (q,
H, CH ),1.30 (t, 3H, CH ).
[
List, B.; Lerner, R.A.; Barbas, C.F. Proline-Catalyzed Direct
3
Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395-
(
2
396.
2
2
3
[8]
Mukherjee, S.; Yang, J.W.; Hoffmann, S.; List. B. Asymmetric
Enamine Catalysis. Chem. Rev. 2007, 107, 5471-5569; (b) Erkkila,
A.; Majander, I.; Pihko, P.M. Iminium catalysis Chem. Rev. 2007,
1
07, 5416-5470.
CONCLUSION
[9]
Machajewski, T.D.; Wong, C.-H. The Catalytic Asymmetric Aldol
Reaction. Angew. Chem., Int. Ed. 2000, 39, 1352-1375; (b) Mar-
tynowski, D.; Eyobo, Y.; Li, T.F.; Yang, K.; Liu, A.; Zhang, H.
Crystal structure of alpha-amino-beta carboxymuconate-epsilon-
semialdehyde decarboxylase: insight into the active site and cata-
lytic mechanism of a novel decarboxylation reaction. Biochem,
2006, 45, 10412-10421; (c) Jordan, P.M. Highlights in haem bio-
synthesis. Curr. Opin. Struct. Biol. 1994, 4, 902-911.
In conclusion we have developed the iron oxide nanopar-
ticles functionalized with dopamine conjugated amino acids
as alternative in asymmetric organocatalysis and examined
their catalytic activity for synthesis of coumarins. We have
developed an efficient, facile and environmentally-
acceptable synthetic methodology for the synthesis of cou-
marin derivatives using magnetically supported Aminocata-
lysis via the enamine mechanism under solvent-free condi-
tion. The advantages of this environmentally benign and safe
protocol include a simple reaction setup, very mild reaction
conditions, high product yields, short reaction times, and the
possibility for reusing the catalyst, chemoselectivity and sol-
vent-free conditions.
[
10]
11]
Xu, L.-W.; Lu, Y. Primary amino acids: privileged catalysts in
enantioselective organocatalysis. Org. Biomol. Chem. 2008, 6,
2
047-2053; (b) Peng, F.; Shao, Z. Advances In Asymmetric Or-
ganocatalytic Reactions Catalyzed By Chiral Primary Amines J.
Mol. Catal. A: Chem. 2008, 285, 1-13; (c) Chen, Y-C. The Devel-
opment of Asymmetric Primary Aminocatalysts Based on Cin-
chona Alkaloids, Synlett, 2008, 1919.
[
Lu, A.H.; Salabas, E.L.; Schuth, F. Magnetic Nanoparticles: Syn-
thesis, Protection, Functionalization, and Application. Angew.
Chem., Int. Ed. 2007, 46, 1222-1244; (b) Perez,J. M. Iron oxide
nanoparticles: hidden talent. Nat. Nanotechnol. 2007, 2, 535-536.
Lai, Y.; Yin, W.; Liu, J.; Xi, R.; Zhan, J. One-Pot Green Synthesis
CONFLICT OF INTEREST
[12]
[13]
and Bioapplication ofl-Arginine-Capped Superparamagnetic Fe
3
O .
4
The authors confirm that this article content has no con-
flicts of interest.
Nanoparticles.Nanoscale Res Lett. 2009, 5,302-307.
Gawande, M.B.; Velhinho, A;. Nogueira, I.D.; Ghumman, C.A.A.;
Teodoro, O.M.N.D.; Branco,P.S. A facile synthesis of cysteine–
ferrite magnetic nanoparticles for application in multicomponent
reactions—a sustainable protocol. RSC Adv. 2012, 2, 6144-6149.
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Magnetic nanoparticle-
supported glutathione: a conceptually sustainable organocatalyst.
Chem. Commun., 2009, 1837-1839.
ACKNOWLEDGEMENTS
[
14]
15]
Declared none.
[
Chouhan, G.; Wang, D.; Alper, H. Magnetic nanoparticle-
supported proline as a recyclable and recoverable ligand for the CuI
catalyzed arylation of nitrogen nucleophiles. Chem. commum.
2007, 4809-4811.
Liem, K.P.; Mart, R.J.; Webb, S.J. Magnetic assembly and pattern-
ing of vesicle/nanoparticle aggregates. J. Am. Chem. Soc. 2007,
129, 12080-12081.
Zheng, Y.; Duanmu, C.; Gao, Y. A magnetic biomimetic nanocata-
lyst for cleaving phosphoester and carboxylic ester bonds under
mild conditions. Org. Lett. 2006, 8, 3215-3217.
REFERENCES
[
1]
Knoevenagel. E. Ueber eine Darstellungsweise der Glutarsäure
Ber. Dtsch. Chem. Ges., 1894, 27, 2345-2346. (b) Tietze, L.F.; Bei-
fuss, U., in Comprehensive Organic Synthsis, ed. B.M. Trost, I.
Fleming, Pergamon, Oxford, UK, 1991, pp. 341-394.
Stork, G.; Terrell, R.; Szmuszkovicz, J. A new synthesis of 2- alkyl
and 2-acyl ketones. J. Am. Chem. Soc. 1954, 76, 2029-2030; (b)
[16]
[17]
[
2]