Inorganic Chemistry
Communication
(28) Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H.-C. Tuning the
Topology and Functionality of Metal−Organic Frameworks by
Ligand Design. Acc. Chem. Res. 2011, 44, 123−133.
(49) Li, L.; da Silva, I.; Kolokolov, D. I.; Han, X.; Li, J.; Smith, G.;
Cheng, Y.; Daemen, L. L.; Morris, C. G.; Godfrey, H. G. W.; Jacques,
N. M.; Zhang, X.; Manuel, P.; Frogley, M. D.; Murray, C. A.; Ramirez-
Cuesta, A. J.; Cinque, G.; Tang, C. C.; Stepanov, A. G.; Yang, S.;
Schroder, M. Post-synthetic modulation of the charge distribution in a
metal−organic framework for optimal binding of carbon dioxide and
sulfur dioxide. Chem. Sci. 2019, 10, 1472−1482.
(29) Stock, N.; Biswas, S. Synthesis of metal-organic frameworks
(MOFs): routes to various MOF topologies, morphologies, and
composites. Chem. Rev. 2012, 112, 933−969.
(30) Li, M.; Li, D.; O’keeffe, M.; Yaghi, O. M. Topological analysis
of metal−organic frameworks with polytopic linkers and/or multiple
building units and the minimal transitivity principle. Chem. Rev. 2014,
114, 1343−1370.
́
(50) Cerny, V. Thermodynamical approach to the travelling
salesman problem: An efficient simulation algorithm. J. Optim.
Theor. Appl. 1985, 45, 41−51.
(51) Li, B.; Zhang, Z.; Li, Y.; Yao, K.; Zhu, Y.; Deng, Z.; Yang, F.;
Zhou, X.; Li, G.; Wu, H.; Nijem, N.; Chabal, Y. J.; Lai, Z.; Han, Y.;
Shi, Z.; Feng, S.; Li, J. Enhanced binding affinity, remarkable
selectivity, and high capacity of CO2 by dual functionalization of a rht-
type metal−organic framework. Angew. Chem., Int. Ed. 2012, 51,
1412−1415.
(31) Zhou, X. P.; Li, M.; Liu, J.; Li, D. Gyroidal metal−organic
frameworks. J. Am. Chem. Soc. 2012, 134, 67−70.
(32) Mallik, A. B.; Lee, S.; Lobkovsky, E. B. Three trigonal
coordination extended solids with gyroid and lamellar topologies.
Cryst. Growth Des. 2005, 5, 609−616.
(33) Wang, F.; Fu, H. R.; Zhang, J. Homochiral Metal−Organic
Framework with Intrinsic Chiral Topology and Helical Channels.
Cryst. Growth Des. 2015, 15, 1568−1571.
(52) Myers, A. L.; Prausnitz, J. M. Thermodynamics of mixed-gas
adsorption. AIChE J. 1965, 11, 121−127.
(53) Liang, Z.; Marshall, M.; Chaffee, A. L. CO2 adsorption-based
separation by metal organic framework (Cu-BTC) versus zeolite
(13X). Energy Fuels 2009, 23, 2785−2789.
(34) Luo, X.; Cao, Y.; Wang, T.; Li, G.; Li, J.; Yang, Y.; Xu, Z.;
Zhang, J.; Huo, Q.; Liu, Y.; Eddaoudi, M. Host−Guest Chirality
Interplay: A Mutually Induced Formation of a Chiral ZMOF and Its
Double-Helix Polymer Guests. J. Am. Chem. Soc. 2016, 138, 786−789.
(35) Huang, J.; He, Y.; Yao, M. S.; He, J.; Xu, G.; Zeller, M.; Xu, Z.
A semiconducting gyroidal metal-sulfur framework for chemiresistive
sensing. J. Mater. Chem. A 2017, 5, 16139−16143.
(54) Hu, Z.; Wang, Y.; Farooq, S.; Zhao, D. A highly stable metal-
organic framework with optimum aperture size for CO2 capture.
AIChE J. 2017, 63, 4103−4114.
(55) Mason, J. A.; Sumida, K.; Herm, Z. R.; Krishna, R.; Long, J. R.
Evaluating metal−organic frameworks for post-combustion carbon
dioxide capture via temperature swing adsorption. Energy Environ. Sci.
2011, 4, 3030−3040.
(36) Karcher, H.; Polthier, K. Construction of triply periodic
minimal surfaces. Philos. Trans. R. Soc., A 1996, 354, 2077−2104.
(37) Zhou, X.; Peng, J. L.; Wen, C. Y.; Liu, Z. Y.; Wang, X. H.; Wu,
J. Z.; Ou, Y. C. Tuning the structure and Zn(ii) sensing of lanthanide
complexes with two phenylimidazophenanthrolines by acetonitrile
hydrolysis. CrystEngComm 2017, 19, 6533−6539.
(38) Lu, Y. N.; Peng, J. L.; Zhou, X.; Wu, J. Z.; Ou, Y. C.; Cai, Y. P.
Rapid naked-eye luminescence detection of carbonate ion through
acetonitrile hydrolysis induced europium complexes. CrystEngComm
2018, 20, 7574−7581.
(39) Hyde, S. T.; O’Keeffe, M. At sixes and sevens, and eights, and
nines: schwarzites p3, p= 7, 8, 9. Struct. Chem. 2017, 28, 113−121.
(40) Brown, I. D. Recent developments in the methods and
applications of the bond valence model. Chem. Rev. 2009, 109, 6858−
6919.
(41) Huang, M. M.; Guo, Y. M.; Shi, Y.; Zhao, L.; Niu, Y. W.; Shi,
Y.; Li, X. L. Luminescent agostic Cu(I) complexes containing both
trigonal planar and tetrahedral coordination modes. Inorg. Chim. Acta
2017, 457, 107−115.
(42) Spek, A. L. Structure validation in chemical crystallography.
Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, D65, 148−155.
̂
́
(43) Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-
Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional
chemical and thermal stability of zeolitic imidazolate frameworks.
Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186−10191.
(44) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti,
C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building
brick forming metal organic frameworks with exceptional stability. J.
Am. Chem. Soc. 2008, 130, 13850−13851.
(45) Qi, X. L.; Lin, R. B.; Chen, Q.; Lin, J. B.; Zhang, J. P.; Chen, X.
M. A flexible metal azolate framework with drastic luminescence
response toward solvent vapors and carbon dioxide. Chem. Sci. 2011,
2, 2214−2218.
(46) Xie, L.-H.; Liu, X.-M.; He, T.; Li, J.-R. Metal-Organic
Frameworks for the Capture of Trace Aromatic Volatile Organic
Compounds. Chem. 2018, 4, 1911−1927.
(47) Burtch, N. C.; Jasuja, H.; Walton, K. S. Water Stability and
Adsorption in Metal−Organic Frameworks. Chem. Rev. 2014, 114,
10575−10612.
(48) McDonald, T. M.; D’Alessandro, D. M.; Krishna, R.; Long, J. R.
Enhanced carbon dioxide capture upon incorporation of N,N′-
dimethylethylenediamine in the metal-organic framework CuBTTri.
Chem. Sci. 2011, 2, 2022−2028.
E
Inorg. Chem. XXXX, XXX, XXX−XXX