Photochemical & Photobiological Sciences
Paper
From a thermodynamic point of view, the system studied in
this work is characterised by a moderate driving force for
internal electron transfer from the ligand to Ru(III) resulting in
the formation of a weak acid. The value of ΔG = −130 meV
deduced from the difference of redox potentials of the chromo-
4 K. Brettel and M. Byrdin, Curr. Opin. Struct. Biol., 2010, 20,
693–701.
5 E. Stadtman, Annu. Rev. Biochem., 1993, 62, 797–821.
6 K. Westerlund, B. W. Berry, H. K. Privett and C. Tommos,
Biochim. Biophys. Acta, 2005, 1707, 103.
phore and the ligand (below its pK
a
) has to be considered as
7 J. J. Warren, M. E. Ener, A. Vlček Jr., J. R. Winkler and
H. B. Gray, Coord. Chem. Rev., 2012, 256, 2478–2487.
8 S. Y. Reece and D. G. Nocera, Annu. Rev. Biochem., 2009, 78,
673–699.
9 M.-T. Zhang, J. Nilsson and L. Hammarstrom, Energy
Environ. Sci., 2012, 5, 7732–7736.
the maximum possible value for the electron transfer step.
Corrections for electrostatic interactions would bring this
value close to, or even below, 100 meV. Despite this low
driving force, the rate of internal electron transfer is fast
7
−1
(
>10 s ). This fast rate is taken to indicate good electronic
coupling between the chromophore and the tryptophan via 10 C. J. Gagliardi, R. A. Binstead, H. H. Thorp and T. J. Meyer,
the triazole spacer, but the relative close proximity between the J. Am. Chem. Soc., 2011, 133, 19594–19597.
tryptophan and the sensitiser together with the flexibility of the 11 M. T. Zhang and L. Hammarström, J. Am. Chem. Soc., 2011,
amide link might also allow through-space electron transfer to 133, 8806–8809.
occur. The estimation of the electron transfer rate in the frame- 12 R. Ghanem, Y. Xu, J. Pan, T. Hoffmann, J. Andersson,
work of Marcus theory shows furthermore that the reorganiz-
ation energy of the reaction must be relatively small. The latter
T. Polívka, T. Pascher, S. Styring, L. Sun and V. Sundström,
Inorg. Chem., 2002, 41, 6258–6266.
fact is in agreement with a stepwise mechanism where electron 13 H. C. Kolb, M. Finn and K. B. Sharpless, Angew. Chem., Int.
transfer is independent of deprotonation of the Trp radical. Ed., 2001, 40, 2004–2021.
The covalently linked chromophore–amino acid system 14 A. Baron, C. Herrero, A. Quaranta, M.-F. Charlot, W. Leibl,
described in this work can be looked at as a first step in an
effort to bind a chromophore to a peptidic motif. The prepa-
B. Vauzeilles and A. Aukauloo, Inorg. Chem., 2012, 51,
5985–5987.
ration of azide-functionalised proteins by different methods 15 A. Baron, C. Herrero, A. Quaranta, M.-F. Charlot, W. Leibl,
2
6–28
has been described.
Combining the high reaction yields,
B. Vauzeilles and A. Aukauloo, Chem. Commun., 2011, 47,
11011–11013.
mild reaction conditions of click chemistry, and the stability of
the triazole link, this approach seems to be an optimal alterna- 16 The reverse possibility, reacting an alkyne-derived ligand
tive for site-specific and selective post modification of pro-
teins. Importantly, our results show that coupling of the
with an azide-derived Ru-complex, is hampered by the low
stability of the latter.
ruthenium complex does not lead to significant modifications 17 M. Yu, J. R. Price, P. Jensen, C. J. Lovitt, T. Shelper,
of the redox and acid–base properties of the addressed amino
acid. We will use this synthetic strategy to address electron
S. Duffy, L. C. Windus, V. M. Avery, P. J. Rutledge and
M. H. Todd, Inorg. Chem., 2011, 50, 12823–12835.
transfer studies in more sophisticated polypeptide and protein 18 I. Choi, Y.-K. Kim, D.-H. Min, S. Lee and W.-S. Yeo, J. Am.
systems where visible light activation by a covalently linked Chem. Soc., 2011, 133, 16718–16721.
chromophore can lead to photoactivation of complex units in 19 A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser
both oxidation and reduction reactions.
and A. Von Zelewsky, Coord. Chem. Rev., 1988, 84, 85–277.
0 M. Sjödin, S. Styring, H. Wolpher, Y. Xu, L. Sun and
L. Hammarström, J. Am. Chem. Soc., 2005, 127, 3855–3863.
1 A. Harriman, J. Phys. Chem., 1987, 91, 6102–6104.
2 M. L. Posener, G. E. Adams, P. Wardman and
R. B. Cundall, J. Chem. Soc., Faraday Trans. 1, 1976, 72,
2
Acknowledgements
2
2
This work was supported by the Agence Nationale de la
Recherche (ANR) (project ANR 2010 BLANC 0926), LABEX
CHARMMMAT and the Conseil Général d’Essonne. S. S. is sup-
ported by the IRTELIS training programme of the CEA. We
would like to thank Dr Annamaria Quaranta for helpful
discussion.
2231–2239.
2
2
2
2
3 S. Solar, N. Getoff, P. S. Surdhar, D. A. Armstrong and
A. Singh, J. Phys. Chem., 1991, 95, 3639–3643.
4 M. Gutman and E. Nachliel, Biochim. Biophys. Acta, Bio-
energ., 1990, 1015, 391–414.
5 D. Huppert and E. Kolodney, Chem. Phys., 1981, 63, 401–
410.
Notes and references
6 S. F. M. van Dongen, R. L. M. Teeuwen, M. Nallani,
S. S. van Berkel, J. J. L. M. Cornelissen, R. J. M. Nolte and
J. C. M. van Hest, Bioconjugate Chem., 2008, 20, 20–23.
1
2
J. L. Dreyer, Experientia, 1984, 40, 653–675.
J. Stubbe and W. A. van der Donk, Chem. Rev., 1998, 98,
7
05–762.
C. Tommos, Philos. Trans. R. Soc. London, Ser. B, 2002, 357,
383–1394.
27 K. L. Kiick, E. Saxon, D. A. Tirrell and C. R. Bertozzi, Proc.
Natl. Acad. Sci. U. S. A., 2002, 99, 19–24.
28 M. D. Best, Biochemistry, 2009, 48, 6571–6584.
3
1
This journal is © The Royal Society of Chemistry and Owner Societies 2013
Photochem. Photobiol. Sci.