Page 7 of 9
Journal of the American Chemical Society
Electron-Transfer and Excited State Quenching Reactions of a Chiral
Ruthenium Complex Possessing a Helical Structure. J. Phys. Chem. A
1999, 103 (29), 5645-5654.
Supporting Information
1
2
3
4
Details of syntheses, characterization, spectra, resolution, separa-
tion, kinetics and crystallography (CIF). This material is available
(20) Hamada, T.; Ohtsuka, H.; Sakaki, S. Novel photo-induced de-
racemization of [Co(acac)3] (acac = acetylacetonate) with a chiral
ruthenium(II)
complex,
Δ-[Ru(menbpy)3]2+
(menbpy = 4,4′-
Reaction
AUTHOR INFORMATION
bis{(1R,2S,5R)-(−)-menthoxycarbonyl}-2,2′-bipyridine).
5
6
7
8
mechanism and significant effects of solvent and anion. J. Chem. Soc.,
Dalton Trans. 2001, (6), 928-934.
Corresponding Author
(21) Bolliger, J. L.; Belenguer, A. M.; Nitschke, J. R. Enantiopure
Water-Soluble [Fe4L6] Cages: Host–Guest Chemistry and Catalytic
Activity. Angew. Chem. Int. Ed. 2013, 52 (31), 7958-7962.
(22) Yamagishi, A. Optical resolution and racemization reaction of
tris(bathophenanthrolinedisulfonato)iron(II): absence of an intramo-
lecular racemization path in aqueous solution. Inorg. Chem. 1986, 25
(1), 55-57.
(23) Yamagishi, A. Optical Resolution and Asymmetric Syntheses
by use of Adsorption on Clay Minerals. J. Coord. Chem. 1987, 16 (2),
131-211.
9
ACKNOWLEDGMENT
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
This work was supported by the NSFC (21821003, 21720102007,
21573291, 21890380), LIRT Project of GPRTP (2017BT01C161)
and the FRF for the Central Universities for funding.
REFERENCES
(1) Knof, U.; von Zelewsky, A. Predetermined Chirality at Metal
Centers. Angew. Chem. Int. Ed. 1999, 38 (3), 302-322.
(2) Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Metal–Organic Frame-
works and Self-Assembled Supramolecular Coordination Complexes:
Comparing and Contrasting the Design, Synthesis, and Functionality
of Metal–Organic Materials. Chem. Rev. 2013, 113 (1), 734-777.
(3) Castilla, A. M.; Ramsay, W. J.; Nitschke, J. R. Stereochemistry
in Subcomponent Self-Assembly. Acc. Chem. Res. 2014, 47 (7),
2063-2073.
(4) Cook, T. R.; Stang, P. J. Recent Developments in the Prepara-
tion and Chemistry of Metallacycles and Metallacages via Coordina-
tion. Chem. Rev. 2015, 115 (15), 7001-7045.
(5) Datta, S.; Saha, M. L.; Stang, P. J. Hierarchical Assemblies of
Supramolecular Coordination Complexes. Acc. Chem. Res. 2018, 51
(9), 2047-2063.
(6) Crassous, J. Transfer of chirality from ligands to metal centers:
recent examples. Chem. Commun. 2012, 48 (78), 9684-9692.
(7) Constable, E. C. Stereogenic metal centres – from Werner to
supramolecular chemistry. Chem. Soc. Rev. 2013, 42 (4), 1637-1651.
(8) Meggers, E. Chiral Auxiliaries as Emerging Tools for the
Asymmetric Synthesis of Octahedral Metal Complexes. Chem. Eur. J.
2010, 16 (3), 752-758.
(9) Pan, M.; Wu, K.; Zhang, J.-H.; Su, C.-Y. Chiral metal–organic
cages/containers (MOCs): From structural and stereochemical design
to applications. Coord. Chem. Rev. 2019, 378 (1), 333-349.
(10) Lappin, A. G.; Marusak, R. A. Stereoselectivity in electron
transfer reactions involving metal ion complexes. Coord. Chem. Rev.
1991, 109 (1), 125-180.
(11) von Zelewsky, A.; Mamula, O. The bright future of stereose-
lective synthesis of co-ordination compounds. J. Chem. Soc., Dalton
Trans. 2000, (3), 219-231.
(12) Bauer, E. B. Chiral-at-metal complexes and their catalytic ap-
plications in organic synthesis. Chem. Soc. Rev. 2012, 41 (8), 3153-
3167.
(13) Jodry, J. J.; Lacour, J. Efficient Resolution of a Dinuclear Tri-
ple Helicate by Asymmetric Extraction/Precipitation with TRISPHAT
Anions as Resolving Agents. Chem. Eur. J. 2000, 6 (23), 4297-4304.
(14) Chen, L.-J.; Yang, H.-B.; Shionoya, M. Chiral metallosupra-
molecular architectures. Chem. Soc. Rev. 2017, 46 (9), 2555-2576.
(15) Kirschner, S.; Bakkar, I. Utilization of the pfeiffer effect and
outer-sphere complexation for the prediction of absolute configura-
tions of optically active metal complexes. Coord. Chem. Rev. 1982,
43, 325-335.
(16) Nakashima, K.; Shinkai, S. Sugar-Assisted Chirality Control
of Tris(2,2′-bipyridine)-Metal Complexes. Chem. Lett. 1994, 23 (7),
1267-1270.
(17) Sutter, J. H.; Hunt, J. B. Asymmetric induction in an outer-
sphere redox reaction. J. Am. Chem. Soc. 1969, 91 (11), 3107-3108.
(18) Tatehata, A.; Mitani, T. Stereoselectivity in Electron-Transfer
Reactions of Tris(ethylenediamine)cobalt(II) with Several Anionic
Cobalt(III) Complexes. Chem. Lett. 1989, 18 (7), 1167-1170.
(19) Hamada, T.; Brunschwig, B. S.; Eifuku, K.; Fujita, E.; Körner,
M.; Sakaki, S.; van Eldik, R.; Wishart, J. F. Enantioselectivities in
(24) Wu, K.; Li, K.; Hou, Y.-J.; Pan, M.; Zhang, L.-Y.; Chen, L.;
Su, C.-Y. Homochiral D4-symmetric metal–organic cages from stere-
ogenic Ru(II) metalloligands for effective enantioseparation of atro-
pisomeric molecules. Nat. Commun. 2016, 7, 10487.
(25) Hamada, T.; Ishida, H.; Usui, S.; Watanabe, Y.; Tsumura, K.;
Ohkubo, K. A novel photocatalytic asymmetric synthesis of (R)-(+)-
1,1′-bi-2-naphthol derivatives by oxidative coupling of 3-substituted-
2-naphthol with Δ-[Ru(menbpy)3]2+[menbpy = 4,4′-di(1R,2S,5R)-(–)-
menthoxycarbonyl-2,2′-bipyridine], which posseses molecular helici-
ty. J. Chem. Soc., Chem. Commun. 1993, (11), 909-911.
(26) Guo, J.; Xu, Y.-W.; Li, K.; Xiao, L.-M.; Chen, S.; Wu, K.;
Chen, X.-D.; Fan, Y.-Z.; Liu, J.-M.; Su, C.-Y. Regio- and Enantiose-
lective Photodimerization within the Confined Space of a Homochiral
Ruthenium/Palladium Heterometallic Coordination Cage. Angew.
Chem. Int. Ed. 2017, 56 (14), 3852-3856.
(27) Zhao, L.; Jing, X.; Li, X.-Z.; Guo, X.-Y.; Zeng, L.; He, C.;
Duan, C.-Y. Catalytic properties of chemical transformation within
the confined pockets of Werner-type capsules. Coord. Chem. Rev.
2019, 378 (1), 151-187.
(28) Howson, S. E.; Bolhuis, A.; Brabec, V.; Clarkson, G. J.; Ma-
lina, J.; Rodger, A.; Scott, P. Optically pure, water-stable metallo-
helical ‘flexicate’ assemblies with antibiotic activity. Nat. Chem. 2011,
4, 31.
(29) Li, M.; Howson, S. E.; Dong, K.; Gao, N.; Ren, J.; Scott, P.;
Qu, X. Chiral Metallohelical Complexes Enantioselectively Target
Amyloid β for Treating Alzheimer’s Disease. J. Am. Chem. Soc. 2014,
136 (33), 11655-11663.
(30) Davies, N. R.; Dwyer, F. P. The kinetics of racemization of
optically active complex ions of group 8 elements. Part 2. The tris-
(1:10 phenanthroline) and tris-(2:2′ dipyridyl) iron II and tris-(2:2′
dipyridyl) nickel II ions. Trans. Faraday Soc. 1953, 49 (0), 180-184.
(31) Basolo, F.; Hayes, J. C.; Neumann, H. M. Mechanism of Rac-
emization of Complex Ions. II. Kinetics of the Dissociation and Rac-
emization of Tris-(1,10-phenanthroline)-iron(II) and Tris-(2,2'-
dipyridyl)-iron(II) Complexes. J. Am. Chem. Soc. 1954, 76 (14),
3807-3809.
(32) Jensen, A.; Basolo, F.; Neumann, H. M. Mechanism of Race-
mization of Complex Ions. IV. Effect of Added Large Ions upon the
Rates of Dissociation and Racemization of Tris-(1,10-
phenanthroline)-iron(II) Ion. J. Am. Chem. Soc. 1958, 80 (10), 2354-
2358.
(33) Seiden, L.; Basolo, F.; Neumann, H. M. Mechanism of Race-
mization of Complex Ions. V. The Dissociation and Racemization of
Tris-(2,2'-bipyridine)-iron(II) and Tris-(1,10-phenanthroline)-iron(II)
Ions in Water-Methanol and Methanol Solutions. J. Am. Chem. Soc.
1959, 81 (15), 3809-3813.
(34) Van Meter, F. M.; Neumann, H. M. The rates of racemization
and dissociation of the tris(1,10-phenanthroline)iron(II) cation in
various solvents. J. Am. Chem. Soc. 1976, 98 (6), 1388-1394.
(35) Lacour, J.; Jodry, J. J.; Ginglinger, C.; Torche-Haldimann, S.
Diastereoselective Ion Pairing of TRISPHAT Anions and Tris(4,4′-
ACS Paragon Plus Environment