Letters
J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 20 4235
ties. Therefore, structure-based fragment screening and
assembly provide valuable tools for quick identification
of novel ligands with specific binding properties, and
the results compared favorably to the hits from HTS.
(13) Shuker, S. B.; Hajduk, P. J .; Meadows, R. P.; Fesik, S. W.
Discovering High-Affinity Ligands for Proteins: SAR by NMR.
Science 1996, 274, 1531-1534.
(14) Liu, G.; Xin, Z.; Liang, H.; Abad-Zapatero, C.; Hajduk, P. J .;
J anowick, D. A.; Szczepankiewicz, B. G.; Pei, Z.; Hutchins, C.
W.; Ballaron, S. J .; Stashko, M. A.; Lubben, T. H.; Berg, C. E.;
Rondinone, C. M.; Trevillyan, J . M.; J irousek, M. R. Selective
Protein Tyrosine Phosphatase 1B Inhibitors: Targeting the
Second Phosphotyrosine Binding Site with Non-Carboxylic Acid-
Containing Ligands. J . Med. Chem. 2003, 46, 3437-3440.
(15) Møller, N. P. H.; Iversen, L. F.; Andersen, H. S.; McCormack, J .
G. Protein Tyrosine Phosphatases (PTPs) as Drug Targets:
Inhibitors of PTP1B for the Treatment of Diabetes. Curr. Opin.
Drug Discovery Dev. 2000, 3, 527-540.
Ack n ow led gm en t. We thank Drs. Elizabeth Everitt
and Mark Schurdak for determining the Caco-2 perme-
ability of inhibitors 8 and 9.
Su p p or tin g In for m a tion Ava ila ble: Experimental de-
tails and analytical and spectral data of key compounds. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(16) Hajduk, P. J .; Augeri, D. J .; Mack, J .; Mendoza, R.; Yang, J .;
Betz, S. F.; Fesik, S. W. NMR-Based Screening of Proteins
1
3
Containing C-Labeled Methyl Groups. J . Am. Chem. Soc. 2000,
22, 7898-7904.
1
(
17) Ibarra-Sanchez, M. D. J .; Simoncic, P. D.; Nestel, F. R.; Duplay,
P.; Lapp, W. S.; Trembley, M. L. The T-Cell Protein Tyrosine
Phosphatase. Semin. Immunol. 2000, 12, 379-386.
Refer en ces
(
(
(
1) (a) Cheng, A.; Dub e´ , N.; Gu, F.; Tremblay, M. L. Coordinated
Action of Protein Tyrosine Phosphatases in Insulin Signal
Transduction. Eur. J . Biochem. 2002, 269, 1050-1059. (b)
Zhang, Z.-Y.; Lee, S. Y. PTP1B Inhibitors as Potential Thera-
peutics in the Treatment of Type 2 Diabetes and Obesity. Expert
Opin. Invest. Drugs 2003, 12, 223-233.
2) Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins,
S.; Loy, A. L.; Normandin, D.; Cheng, A.; Himms-Hagen, J .;
Chan, C. C.; Ramachandran, C.; Gresser, M. J .; Tremblay, M.
L.; Kennedy, B. P. Increased Insulin Sensitivity and Obesity
Resistance in Mice Lacking the Protein-Tyrosine Phosphatase-
(18) Iversen, L. F.; Møller, K. B.; Pedersen, A. K.; Peters, G. H.;
Petersen, A. S.; Andersen, H. S.; Branner, S.; Mortensen,
S. B.; Møller, N. P. H. Structure Determination of T Cell
Protein-Tyrosine Phosphatase. J . Biol. Chem. 2002, 277,
19982-19990.
(19) See ref 14 for the discussion of possible origin of TCPTP
selectivity derived from interaction with site 2 of PTP1B.
(20) For references on the discovery of a difluorophosphonic acid
based, highly potent PTP1B inhibitor (K ) 2.4 nM) with 10-
i
fold TCPTP selectivity, see: Sun, J .-P.; Fedorov, A. A.; Lee, S.-
Y.; Guo, X.-L.; Shen, K.; Lawrence, D. S.; Almo, S. C.; Zhang,
Z.-Y. Crystal Structure of PTP1B Complexed with a Potent and
Selective Bidentate Inhibitor. J . Biol. Chem. 2003, 278, 12406-
12414 and references therein.
1
B Gene. Science 1999, 283, 1544-1548.
3) Klaman, L. D.; Boss, O.; Peroni, O. D.; Kim, J . K.; Martino, J .
L.; Zabolotny, J . M.; Moghal, N.; Lubkin, M.; Kim, Y. B.; Sharpe,
A. H.; Stricker-Krongrad, A.; Shulman, G. I.; Neel, B. G.; Kahn,
B. B. Increased Energy Expenditure, Decreased Adiposity, and
Tissue-Specific Insulin Sensitivity in Protein-Tyrosine Phos-
phatase 1B-Deficient Mice. Mol. Cell. Biol. 2000, 20, 5479-5489.
4) Barford, D. Colworth Medal Lecture. Structural Studies of
Reversible Protein Phosphorylation and Protein Phosphatases.
Biochem. Soc. Trans. 1999, 27, 751-766.
(21) Mitchell, T. N. Palladium-Catalysed Reactions of Organotin
Compounds. Synthesis 1992, 803-815.
(22) Refined crystallographic coordinates for the structure of PTP1B
complexed with 9 have been deposited with the Protein Data
Bank (www.rcsb.org) with entry code 1Q1M.
(23) Kaszubska, W.; Falls, H, D.; Schaefer, V. G.; Haasch, D.; Frost.
L.; Hessler, P.; Kroeger, P. E.; White, D. W.; J irousek, M. R.;
Trevillyan, J . M. Protein Tyrosine Phosphatase 1B Negatively
Regulates Leptin Signaling in a Hypothalamic Cell Line. Mol.
Cell. Endocrinol. 2002, 195, 109-118.
(24) Zabolotny, J . M.; Bence-Hanulec, K. K.; Stricker-Krongrad, A.;
Haj, F.; Wang, Y.; Minokoshi, Y.; Kim, Y. B.; Elmquist, J . K.;
Tartaglia, L. A.; Kahn, B. B.; Neel, B. G. PTP1B Regulates
Leptin Signal Transduction in Vivo. Dev. Cell 2002, 2,
489-495.
(25) Posner, B. I.; Faure, R.; Burgess, J . W.; Bevan, A. P.; Lachance,
D.; Zhang-Sun, G.; Fantus, I. G.; Ng, J . B.; Hall, D. A.; Lum, B.
S. Peroxovanadium Compounds. A New Class of Potent Phos-
photyrosine Phosphatase Inhibitors Which Are Insulin Mimetics.
J . Biol. Chem. 1994, 269, 4596-4604.
(26) Yee, S. In Vitro Permeability across Caco-2 Cells (Colonic) Can
Predict in Vivo (Small Intestinal) Absorption in MansFact or
Myth. Pharm. Res. 1997, 14, 763-766.
(27) Chambers, R. D. In Interscience Monographs in Organic Chem-
istry: Fluorine in Organic Chemistry; J ohn Wiley and Sons:
New York, 1973.
(28) Liljebris, C.; Larsen, S. D.; Ogg, D.; Palazuk, B. J .; Bleasdale,
J . E. Investigation of Potential Bioisosteric Replacements for the
Carboxyl Groups of Peptidomimetic Inhibitors of Protein Ty-
rosine Phosphatase 1B: Identification of a Tetrazole-Containing
Inhibitor with Cellular Activity. J . Med. Chem. 2002, 45, 1785-
1798.
(29) Larsen, S. D.; Stevens, F. C.; Lindberg, T. J .; Bodnar, P. M.;
O’Sullivan, T. J .; Schostarez, H. J .; Palazuk, B. J .; Bleasdale, J .
E. Modification of the N-Terminus of Peptidomimetic Protein
Tyrosine Phosphatase 1B (PTP1B) Inhibitors: Identification of
Analogues with Cellular Activity. Bioorg. Med. Chem. Lett. 2003,
13, 971-975.
(
(
(
5) Barford, D.; Flint, A. J .; Tonks, N. K. Crystal Structure of
Human Protein Tyrosine Phosphatase 1B. Science 1994, 263,
1
397-1404.
6) Sarmiento, M.; Puius, Y. A.; Vetter, S. W.; Keng, Y. F.; Wu, L.;
Zhao, Y.; Lawrence, D. S.; Almo, S. C.; Zhang, Z.-Y. Structural
Basis of Plasticity in Protein Tyrosine Phosphatase 1B Substrate
Recognition. Biochemistry 2000, 39, 8171-8179.
(
(
(
7) J ohnson, T. O.; Ermolieff, J .; J irousek, M. R. Protein Tyrosine
Phosphatase 1B Inhibitors for Diabetes. Nat. Rev. Drug Discov-
ery 2002, 1, 696-709.
8) Blaskovich, M. A.; Kim, H. O. Recent Discovery and Development
of Protein Tyrosine Phosphatase Inhibitors. Expert Opin. Ther.
Pat. 2002, 12, 871-905.
9) Liu, G.; Trevillyan, J . M. Protein Tyrosine Phosphatase 1B as a
Target for the Treatment of Impaired Glucose Tolerance and
Type 2 Diabetes. Curr. Opin. Invest. Drugs 2002, 3, 1608-1616.
(
10) Puius, Y. A.; Zhao, Y.; Sullivan, M.; Lawrence, D. S.; Almo, S.
C.; Zhang, Z.-Y. Identification of a Second Aryl Phosphate-
Binding Site in Protein-Tyrosine Phosphatase 1B: A Paradigm
for Inhibitor Design. Proc. Natl. Acad. Sci. U.S.A. 1997, 94,
1
3420-13425.
(
11) Szczepankiewicz, B. G.; Liu, G.; Pei, Z.; Xin, Z.; Lubben, T. H.;
Trevillyan, J . M.; Stashko, M. A.; Ballaron, S. J .; Hajduk, P. J .;
Liang, H.; Huang, F.; Hutchins, C. W.; Abad-Zapatero, C.;
J irousek, M. R.; Fesik, S. W. Discovery of a Potent, Selective
Protein Tyrosine Phosphatase 1B Inhibitor Using a Linked-
Fragment Based Strategy. J . Am. Chem. Soc. 2003, 125, 4087-
4
096.
(
12) Xin, Z.; Oost, T.; Abad-Zapatero, C.; Hajduk, P. J .; Pei, Z.;
Szczepankiewicz, B. G.; Hutchins, C. W.; Ballaron, S. J .; Stashko,
M. A.; Lubben, T.; Trevillyan, J . M.; J irousek, M. R.; Liu, G.
Potent, Selective Inhibitors of Protein Tyrosine Phosphatase 1B.
Bioorg. Med. Chem. Lett. 2003, 13, 1887-1890.
J M034122O