Please
C
d
r
o
ys
n
t
o
E
t
n
a
g
d
C
ju
o
s
m
t m
m
argins
Page 6 of 7
ARTICLE
Journal Name
1
1
1
1
1
Soc. Rev., 2014, 43, 6011‐6061.
1 B. J. Burnett, P. M. Barron, C. Hu, W. Choe, J. Am. Chem. Soc.,
011, 133, 9984‐9987.
2 Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi, M. J. Zaworotko,
J. Am. Chem. Soc., 2012, 134, 928‐933.
Ir‐PMOF‐1(Zr) carries coordinatively unsaturated Ir active sites
DOI: 10.1039/C6CE00358C
and shows high stability against organic solvents, water, as
well as heating (up to 240 C). As self‐supported
heterogeneous catalyst, Ir‐PMOF‐ (Zr) is efficient in O‐H
º
a
2
1
insertion reaction of alcohols and phenols, displaying superior
capabilities to the related homogenous catalysts. In the
reaction system, Ir‐PMOF‐1(Zr) manifests advantages in easy
recycling, reusable catalysis and good stability, thereof
implying a promising application by developing and improving
such kind of self‐supporting heterogeneous catalyst based on
iridium(III)‐porphyrin metal‐organic frameworks.
3 Q. Lin, X. Bu, A. Kong, C. Mao, X. Zhao, F. Bu, P. Feng, J. Am.
Chem. Soc., 2015, 137, 2235‐2238.
4 A. Fateeva, S. Devautour‐Vinot, N. Heymans, T. Devic, J.‐M.
Grenèche, S. Wuttke, S. Miller, A. Lago, C. Serre, G. De
Weireld, G. Maurin, A. Vimont, G. Férey, Chem. Mater., 2011,
23, 4641‐4651.
1
1
1
1
5 G. Nandi, I. Goldberg, Chem. Commun., 2014, 50, 13612‐
1
3615.
6 I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha, J. T.
Hupp, ACS Catal., 2015, , 6302‐6309.
7 H.‐C. Kim, Y. S. Lee, S. Huh, S. J. Lee, Y. Kim, Dalton Trans.,
5
2
014, 43, 5680‐5686.
8 L. Meng, Q. Cheng, C. Kim, W.‐Y. Gao, L. Wojtas, Y.‐S. Chen,
M. J. Zaworotko, X. P. Zhang, S. Q. Ma, Angew. Chem. Int. Ed.,
2
012, 51, 10082‐10085.
1
2
9 S. R. Ahrenholtz, C. C. Epley, A. J. Morris, J. Am. Chem. Soc.,
014, 136, 2464‐2472.
0 A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z.
Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew.
Chem. Int. Ed., 2012, 51, 7440‐7444.
2
2
2
1 E. A. Dolgopolova, D. E. Williams, A. B. Greytak, A. M. Rice, M.
D. Smith, J. A. Krause, N. B. Shustova, Angew. Chem. Int. Ed.,
2
015, 54, 13639‐13643.
2 K. S. Suslick, P. Bhyrappa, J. ‐H. Chou, M. E. Kosal, S. Nakagaki,
D. W. Smithenry, S. R. Wilson, Acc. Chem. Res., 2005, 38
83‐291.
,
2
2
2
2
3 C. Zou, Z. Zhang, X. Xu, Q. Gong, J. Li, C.‐D. Wu, J. Am. Chem.
Soc., 2012, 134, 87‐90.
Figure 4. Recycling experiments.
4 J. Zheng, M. Wu, F. Jiang, W. Su, M. Hong, Chem. Sci., 2015,
6, 3466‐3470.
5 W. Morris, B. Volosskiy, S. Demir, F. Gándan, P. L. McGrier, H.
Acknowledgements
Furukawa, D. Cascio, J. F. Stoddart, O. M. Yaghi, J. Am. Chem.
Soc., 2015, 137, 2199‐2202.
This work was supported by the 973 Program (2012CB821701), the
NSFC Projects (21373278, 21450110063, 91222201), the STP Project
of Guangzhou (15020016), the NSF of Guangdong Province
2
6 N. Kornienko, Y. Zhao, C. S. Kley, C. Zhu, D. Kim, S. Lin, C. J.
Chang, O. M. Yaghi, P. Yang, J. Am. Chem. Soc., 2015, 137
,
1
4129‐14135.
(
(
S2013030013474) and the RFDP of Higher Education of China 27 J. A. Johnson, X. Zhang, T. C. Reeson, Y.‐S. Chen, J. Zhang, J.
20120171130006).
Am. Chem. Soc., 2014, 136, 15881‐15884.
2
8 (a) D. Feng, W.‐C. Chung, Z. Wei, Z.‐Y. Gu, H.‐L. Jiang, Y.‐P.
Chen, D. J. Darensbourg, H.‐C. Zhou, J. Am. Chem. Soc., 2013,
1
35, 17105‐17110. (b) D. Feng, Z.‐Y. Gu, J.‐R. Li, H.‐L. Jiang, Z.
Wei, H.‐C. Zhou, Angew. Chem. Int. Ed., 2012, 51, 10307‐
0310. (c) T.‐F. Liu, D. Feng, Y.‐P. Chen, L. Zou, M. Bosch, S.
Notes and references.
1
1
2
3
J. Ma, L. Zhang, S. Zhu, Curr. Org. Chem., 2016, 20, 102‐118.
I. Aviv, Z. Gross, Chem. Commun., 2006, 4477‐4479.
Yuan, Z. Wei, S. Fordham, K. Wang, H.‐C. Zhou, J. Am. Chem.
Soc., 2015, 137, 413‐419. (d) D. Feng, H.‐L. Jiang, Y.‐P. Chen,
Z.‐Y. Gu, Z. Wei, H.‐C. Zhou, Inorg. Chem. 2013, 52, 12661‐
12667.
S. Zhu, X. Xu, J. A. Perman, X. P. Zhang, J. Am. Chem. Soc.,
2
010, 132, 12796‐12799.
4
C.‐M. Ho, J.‐L. Zhang, C.‐Y. Zhou, O.‐Y. Chan, J. J. Yan, F.‐Y. 29 D. Hagrman, P. J. Hagrman, J. Zubieta, Angew. Chem. Int. Ed.,
Zhang, J.‐S. Huang, C.‐M. Che, J. Am. Chem. Soc., 2010, 132
886‐1894.
(a) H. J. Callot, F. Metz, C. Piechocki, Tetrahedron 1982, 38
,
1999, 38, 3165‐3168.
1
30 J. Kang, B. Zhu, J. Liu, B. Wang, L. Zhang, C‐Y. Su, Org. Chem.
5
,
Front., 2015, 2, 890‐907.
2
365‐2369; (b) H.‐Y. Thu, G. S.‐M. Tong, J.‐S. Huang, S. L.‐F. 31 (a) L. Chen, J. Kang, H. Cui, X. Wang, L. Liu, L. Zhang, C‐Y. Su,
Chan, Q.‐H. Deng, C.‐M. Che, Angew. Chem. Int. Ed., 2008, 47
747‐9751.
B. J. Anding, L. K. Woo, Organometallics 2013, 32, 2599‐2607.
,
Dalton Trans., 2015, 44, 12180‐12188. (b) L. Chen, T. Yang, H.
9
Cui, T. Cai, L. Zhang, C‐Y. Su, J. Mater. Chem. A 2015, 3,
6
7
20201‐20209.
J.‐C. Wang, Y. Zhang, Z.‐J. Xu, V. K.‐Y. Lo, C.‐M. Che, ACS 32 (a) H. Ogoshi, J.‐I. Setsune, Z.‐I. Yoshida, J. Organomet. Chem.
Catal., 2013,
3
, 1144‐1148.
1978, 159, 317‐328. (b) K. J. Del Rossi, B. B. Wayland, J. Chem.
Soc., Chem. Commun. 1986, 1653‐1655. (c) S. K. Yeung, K. S.
Chan, Organometallics 2005, 24, 6426‐6430.
8
9
I. Rodríguez‐García, C. López‐Sánchez, M. Álvarez‐Corral and
M. Muñoz‐Dorado, Synlett, 2012, 23, 2469‐2472.
N. U. Day, C. C. Wamser and M. G. Walter, Polym. Int., 2015, 33 (a) O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard,
6
4, 833‐857.
H. Puschmann, J. Appl. Cryst., 2009, 42, 339‐341; (b) L. J.
Farrugia, J. Appl. Cryst., 1999, 32, 837‐838; (c) P. V. D. Sluis,
6
| J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins