Page 3 of 4
Please dCo h ne omt aC do j um s mt margins
DOI: 10.1039/C5CC10408D
Journal Name
COMMUNICATION
In addition to the polar azine functional groups, which no 12.
doubt contribute to the strong adsorption, the small pore sizes
S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M.
Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi
and C. J. Chang, Science, 2015, 349, 1208-1213.
(
~11 Å in diameter) within HEX-based materials could also be a
factor. CH adsorption measurements (Figure 4b) were also
carried out showing that HEX-COF 1 can store up to 2.3 wt% of
CH at 273 K with maximum enthalpies of adsorption around
1
1
1
1
3.
4.
5.
6.
H. Xu, J. Gao and D. Jiang, Nature Chem., 2015, 7, 905-
4
9
12.
P. Pachfule, S. Kandambeth, D. Diaz Diaz and R. Banerjee,
Chem. Commun., 2014, 50, 3169-3172.
M. Dogru and T. Bein, Chem. Commun., 2014, 50, 5531-
4
2
7 kJ/mol (Figure 4c, red line).
In conclusion, we have synthesized a novel azine linked
5
546.
COF based on a six-fold symmetrical aldehyde functionalized
hexaphenylbenezene monomer. Interestingly, these COFs
display the adsorptions properties of an ordered microporous 17.
X.-H. Liu, C.-Z. Guan, D. Wang and L.-J. Wan, Adv. Mater.,
2014, 26, 6912-6920.
S. Dalapati, M. Addicoat, S. Jin, T. Sakurai, J. Gao, H. Xu, S.
Irle, S. Seki and D. Jiang, Nat. Commun., 2015, 6, 7786.
C. R. DeBlase, K. E. Silberstein, T.-T. Truong, H. D. Abruña
and W. R. Dichtel, J. Am. Chem. Soc., 2013, 135, 16821-
material with a type I isotherm and a narrow pore size
1
1
8.
9.
distribution, but with a relatively weak PXRD pattern indicating
a low level of long range order, likely owing to the poor
interlayer interactions between the propeller-shaped HEX
units. Despite the low level of long-range order, HEX-COF 1
1
6824.
C. R. DeBlase, K. Hernández-Burgos, K. E. Silberstein, G. G.
Rodríguez-Calero, R. P. Bisbey, H. D. Abruña and W. R.
Dichtel, ACS Nano, 2015, 9, 3178-3183.
2 4
exhibits outstanding surface area, CO and CH adsorption
capability. We believe the unique triangular shape and very
small pore sizes accessible through HEX-based monomers
make them an interesting family of COFs to study for insight on
how to design new materials for gas storage and sieving.
2
2
0.
1.
S. Duhović and M. Dincă, Chem. Mater., 2015, 27, 5487-
5
490.
Z. Zha, L. Xu, Z. Wang, X. Li, Q. Pan, P. Hu and S. Lei, ACS
Appl. Mater. Interfaces., 2015, 7, 17837-17843.
Designing HEX systems with improved interlayer stacking will 22.
further improve our understanding of the structure and design
rules required to reliably stitch together complex monomers
Y. Du, H. Yang, J. M. Whiteley, S. Wan, Y. Jin, S.-H. Lee and
W. Zhang, Angew. Chem. Int. Ed., 2015, DOI:
1
0.1002/anie.201509014.
2
3.
C. M. Thompson, G. T. McCandless, S. N. Wijenayake, O.
Alfarawati, M. Jahangiri, A. Kokash, Z. Tran and R. A.
Smaldone, Macromolecules, 2014, 47, 8645-8652.
C. M. Thompson, F. Li and R. A. Smaldone, Chem.
Commun., 2014, 50, 6171-6173.
Q. Chen, M. Luo, T. Wang, J.-X. Wang, D. Zhou, Y. Han, C.-
S. Zhang, C.-G. Yan and B.-H. Han, Macromolecules, 2011,
44, 5573-5577.
into ordered COFs with designed properties.
This research was carried out with support from the
University of Texas, Dallas, and the American Chemical Society
Petroleum Research Fund (52906-DNI10). We would like to
acknowledge Sahila Perananthan, Wijayantha Perera and
Chamaal Karunaweera for assistance with thermal and spectral
analysis.
2
2
4.
5.
Notes and references
26.
C. Zhang, L.-H. Peng, B. Li, Y. Liu, P.-C. Zhu, Z. Wang, D.-H.
Zhan, B. Tan, X.-L. Yang and H.-B. Xu, Polym. Chem., 2013,
4
, 3663-3666.
1.
2.
3.
4.
A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J.
Matzger and O. M. Yaghi, Science, 2005, 310, 1166-1170.
J. W. Colson and W. R. Dichtel, Nature Chem., 2013, 5,
2
7.
R. Short, M. Carta, C. G. Bezzu, D. Fritsch, B. M. Kariuki
and N. B. McKeown, Chem. Commun., 2011, 47, 6822-
6
M. Carta, P. Bernardo, G. Clarizia, J. C. Jansen and N. B.
McKeown, Macromolecules, 2014, 47, 8320-8327.
P. T. K. Nguyen, H. T. D. Nguyen, H. Q. Pham, J. Kim, K. E.
Cordova and H. Furukawa, Inorg. Chem., 2015, 54, 10065-
824.
4
53-465.
P. J. Waller, F. Gándara and O. M. Yaghi, Acc. Chem. Rev.,
015, DOI: 10.1021/acs.accounts.5b00369.
2
2
8.
9.
2
H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P.
Côté, R. E. Taylor, M. O'Keeffe and O. M. Yaghi, Science,
1
0072.
2
007, 316, 268-272.
E. Ganz and M. Dornfeld, J. Phys. Chem. C, 2012, 116,
661-3666.
3
3
0.
1.
S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai and D. Jiang, J.
Am. Chem. Soc., 2013, 135, 17310-17313.
L. Stegbauer, M. W. Hahn, A. Jentys, G. Savasci, C.
Ochsenfeld, J. A. Lercher and B. V. Lotsch, Chem. Mater.,
5
.
.
3
6
M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R.
Ding and H. M. El-Kaderi, Chem. Eur. J., 2013, 19, 3324-
2
015, DOI: 10.1021/acs.chemmater.5b02151.
J.-Y. Yue, X.-H. Liu, B. Sun and D. Wang, Chem. Commun.,
015, 51, 14318-14321.
Y. Zhu, S. Wan, Y. Jin and W. Zhang, J. Am. Chem. Soc.,
015, DOI: 10.1021/jacs.5b09487.
3328.
3
3
3
2.
3.
4.
7
8
9
1
1
.
Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu and Y. Mu,
Chem. Commun., 2014, 50, 13825-13828.
Z. Li, Y. Zhi, X. Feng, X. Ding, Y. Zou, X. Liu and Y. Mu,
Chem. Eur. J., 2015, 21, 12079-12084.
L. A. Baldwin, J. W. Crowe, M. D. Shannon, C. P. Jaroniec
and P. L. McGrier, Chem. Mater., 2015, 27, 6169-6172.
Z. Xiang, D. Cao, J. Lan, W. Wang and D. P. Broom, Energ.
Environ. Sci., 2010, 3, 1469-1487.
L. Stegbauer, K. Schwinghammer and B. V. Lotsch, Chem.
Sci., 2014, 5, 2789-2793.
2
.
2
Y. B. Borozdina, E. Mostovich, V. Enkelmann, B. Wolf, P. T.
Cong, U. Tutsch, M. Lang and M. Baumgarten, J. Mater.
Chem. C, 2014, 2, 6618-6629.
B. J. Smith and W. R. Dichtel, J. Am. Chem. Soc., 2014, 136,
8
.
0.
1.
3
3
5.
6.
783-8789.
Z. Kahveci, T. Islamoglu, G. A. Shar, R. Ding and H. M. El-
Kaderi, CrystEngComm, 2013, 15, 1524-1527.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins