R. T. Stemmler, C. Bolm / Tetrahedron Letters 48 (2007) 6189–6191
6191
by K. Deckers is appreciated, and R.T.S. thanks DFG
Casy, G.; Johnson, N. B. J. Org. Chem. 1998, 63, 6084–
085.
. Typical procedure for the hydrogenation of enamides 6:
Rh(cod) ]BF (2.0 mg, 5.0 lmol, 1.0 mol %) and cyrhet-
6
(
GRK 440) for a predoctoral stipend.
9
[
2
4
rene 1b (4.0 mg, 5.5 lmol, 1.1 mol %) were placed in a vial
under argon, dissolved in ethyl acetate (0.4 mL) and
stirred at room temperature for 20 min. A solution of
enamide 6a (81 mg, 0.50 mmol) in ethyl acetate (0.4 mL)
was added, and the vial was placed into an argon-filled
100 mL autoclave. The autoclave was sealed, purged with
hydrogen (3 · 10 bar) and finally pressurized to 10 bar.
The reaction mixture was stirred for 16 h, after which full
conversion of the starting material was achieved as
indicated by TLC analysis (pentane/ethyl acetate 1:3).
The solution was filtered through a short plug of silica gel
(elution with ethyl acetate) and concentrated. N-(1-Phen-
References and notes
1
. For overviews of industrial aspects see: (a) J a¨ kel, C.;
Paciello, R. Chem. Rev. 2006, 106, 2912–2942; (b) Feder-
sel, H.-J. Nat. Rev. Drug Disc. 2005, 4, 685–697; (c)
Hawkins, J. M.; Watson, T. J. N. Angew. Chem., Int. Ed.
004, 43, 3224–3228; Angew. Chem. 2004, 116, 3286–3290;
d)Asymmetric Catalysis on Industrial Scale; Blaser, H.-U.,
Schmidt, E., Eds.; Wiley-VCH: Weinheim, Germany,
004; (e) Blaser, H.-U. Chem. Commun. 2003, 293–296;
f) Blaser, H.-U.; Spindler, F.; Studer, M. Appl. Catal. A:
2
(
2
(
Gen. 2001, 221, 119–143.
. For overviews of phosphorous ligands for asymmetric
hydrogenation, see: (a) Tang, W.; Zhang, X. Chem. Rev.
ylethyl)acetamide (7a) was isolated as pale yellow solid
1
2
(81 mg, 99%). H NMR (400 MHz, CDCl
3
) d 1.49 (d,
J = 6.9 Hz, 3H), 1.99 (s, 3H), 5.13 (dq, J = 7.4, 6.9 Hz,
1H), 5.64 (br s, 1H, NH), 7.25–7.37 (m, 5H). The
enantiomeric ratio was determined by chiral GC using
a FS Cyclodex b-I/P capillary column (25 m · 0.2 mm),
2
003, 103, 3029–3070; (b) Blaser, H.-U.; Malan, C.; Pugin,
B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal.
003, 345, 103–151.
2
5
3
4
. Cyrhetrene is an abbreviation for g -cyclopentadienyl-
rhenium(I) tricarbonyl complexes.
with H
2
as the carrier gas; 49.4 min (minor), 50.7 min
(major).
. (a) Bolm, C.; Xiao, L.; Hintermann, L.; Focken, T.;
Raabe, G. Organometallics 2004, 23, 2362–2369; (b)
Stemmler, R. T.; Bolm, C. J. Org. Chem. 2005, 70,
10. ortho-Substituted a-arylenamides are generally challeng-
ing substrates in the hydrogenation reaction, and they
often lead to low enantiomeric excesses of the correspond-
ing acetamides. The influence of ortho-substitutents has
been studied, and alternative modes of coordination of the
enamide, which are competitive in the case of ortho-
substituted a-arylenamides, were suggested by Imamoto:
Gridnev, I. D.; Yasutake, M.; Higashi, N.; Imamoto, T.
J. Am. Chem. Soc. 2001, 123, 5268–5276.
11. For examples of insensitive catalyst systems see: (a) Burk,
M. J.; Wang, Y. M.; Lee, J. R. J. Am. Chem. Soc. 1996,
118, 5142–5143; (b) Zhu, G.; Zhang, X. J. Org. Chem.
1998, 63, 9590–9593; (c) Li, W.; Zhang, X. J. Org. Chem.
2000, 65, 5871–5874; (d) Zeng, Q.-H.; Hu, X.-P.; Duan,
Z.-C.; Liang, X.-M.; Zheng, Z. J. Org. Chem. 2006, 71,
393–396.
12. For an example of a catalyst system sensitive to the
configuration of the enamide-double bond see: Imamoto,
T.; Oohara, N.; Takahashi, H. Synthesis 2004, 1353–1358.
13. The enantiomeric ratios were determined by HPLC or GC
using a chiral stationary phase [HPLC: Daicel Chiralcel
columns, GC: FS-Cyclodex b I/P (25 m · 0.2 mm)]. The
separation conditions for compounds 7b–j are as follows:
Acetamide 7b: AS, heptane/2-PrOH 90:10, 1.0 mL/min,
220 nm, 22.6 min (minor), 25.9 min (major); 7c: AS,
heptane/2-PrOH 90:10, 1.0 mL/min, 205 nm, 15.5 min
(minor), 17.8 min (major); 7d: OD, heptane/2-PrOH
90:10, 1.0 mL/min, 220 nm, 9.7 min (major), 11.4 min
(minor); 7e: AD-H, heptane/2-PrOH 95:5, 0.6 mL/min,
220 nm, 16.9 min (major), 22.4 min (minor); 7f: AD-H,
heptane/2-PrOH 90:10, 0.6 mL/min, 220 nm, 9.4 min
(major), 11.1 min (minor); 7g: OD-H, heptane/2-PrOH
95:5, 0.55 mL/min, 220 nm, 16.6 min (major), 19.7 min
(minor); 7h: OD-H, heptane/2-PrOH 90:10, 0.55 mL/min,
220 nm, 17.9 min (major), 20.6 min (minor); 7i: FS-
9
1
925–9931; (c) Stemmler, R. T.; Bolm, C. Synlett 2007,
365–1370.
5
6
. Preliminary results of the hydrogenation of enamide 6a
have been reported earlier, see Ref. 4b.
. Analytical data for new cyrhetrene 1d: mp: 139–142 ꢁC
2
D
3
1
(
C
2
dec); ½aꢀ ꢁ143 (c 1.1, CHCl
3
); H NMR (300 MHz,
6
D
6
) d 1.37 (dd, J = 6.7, 6.2 Hz, 3H, CH
3
), 1.92 (s, 6H,
· ArCH ), 2.07 (s, 6H, 2 · ArCH ), 4.29–4.43 (m, 2H,
3
3
Cp-CH, CH), 4.64–4.73 (m, 1H, Cp-CH), 5.01 (dd,
J = 2.7, 1.6 Hz, 1H, Cp-CH), 6.56 (s, 1H, Ar-CH), 6.79
(
s, 1H, Ar-CH), 6.97–7.23 (m, 10H, Ar-CH), 7.41 (dt,
J = 8.0, 1.3 Hz, 2H, Ar-CH), 7.57 (dt, J = 8.1, 1.7 Hz, 2H,
1
3
Ar-CH); C NMR (75 MHz, C
6
D
6
) d 19.1 (CH
), 29.7 (dd, J = 21.0, 10.3 Hz, CH), 79.6
Cp-CH), 86.8 (d, J = 3.9 Hz, Cp-CH), 93.6 (d,
3
), 21.2
(
(
6C, 4 · ArCH
3
J = 5.0 Hz, Cp-CH), 96.9 (dd, J = 17.5, 15.4 Hz, Cp-C),
22.0 (d, J = 22.5 Hz, Cp-C), 127.9 (Ar-CH), 128.7 (d,
1
J = 10.8 Hz, 2C, Ar-CH), 128.9 (d, J = 7.9 Hz, 2C, Ar-
CH), 129.8 (2C, Ar-CH), 130.0 (2C, Ar-CH), 130.2 (Ar-
CH), 131.6 (Ar-CH), 133.2 (Ar-CH), 133.5 (Ar-CH), 133.7
(
d, J = 21.6 Hz, 2C, Ar-CH), 134.9 (J = 21.7 Hz, 2C, Ar-
CH), 136.9 (d, J = 18.5 Hz, 2C, Ar-C), 137.6 (d,
J = 7.8 Hz, 2C, Ar-C), 138.0 (d, J = 5.2 Hz, 2C, Ar-C),
3
1
1
38.5 (d, J = 7.3 Hz, 2C, Ar-C); P NMR (121 MHz,
) d ꢁ29.61 (d, J = 25.4 Hz), +11.68 (d, J = 25.4 Hz);
6 6
C D
ꢁ1
IR (KBr, cm ) m 2019, 1921, 1435, 1038, 845, 744, 695,
+
+
6
7
[
[
5
(
10, 505; MS (EI) m/z (%) 788 (M , 18), 786 [(Mꢁ2) , 10],
+
+
60 [(MꢁCO) , 100], 758 [(Mꢁ2ꢁCO) , 64], 732
+
+
(Mꢁ2CO) , 25], 730 [(Mꢁ2ꢁ2CO) , 15], 575
2 2
+
+
(MꢁCOꢁPPh ) , 60], 573 [(Mꢁ2ꢁCOꢁPPh ) , 38],
+
47 [(MꢁPXyl ) , 16], 546 (16), 518 (14), 461 (17), 459
2
11). Anal. Calcd for C38H O P Re: C, 57.93; H, 4.48.
35 3 2
Found: C, 57.65; H, 4.81.
2
Cyclodex b I/P, 80 kPa H , 80.4 min (minor), 81.0 min
7
8
. The following enantioselectivities have been achieved: 1a
in DCM): 87% ee; 1b (in EtOAc): 93% ee; 1c (in EtOAc):
7% ee; 1d (in EtOAc): 78% ee.
. All enamides were prepared according to reported proce-
dures by Burk: (a) Burk, M. J.; Wang, Y. M.; Lee, J. R. J.
Am. Chem. Soc. 1996, 118, 5142–5143; (b) Burk, M. J.;
(major); 7j: OD-H, Heptan/2-PrOH 90:10, 0.55 mL/min,
210 nm, 28.2 min (minor), 33.3 min (major).
(
7
14. Presumably, the Z-isomer of a-arylenamides is hydroge-
nated more selectively, which was also observed by
*
Imamoto using the DiSquareP /Rh(I) catalyst system,
see Ref. 12.