Page 7 of 8
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
(11)
(12)
Sato, S.; Hatano, K.; Tsushima, M.; Nakamura, H. 1-Me-
(24)
(25)
(26)
Varmaghani, F.; Hassan, M.; Nematollahi, D.; Mallakpour,
thyl-4-Aryl-Urazole (MAUra) Labels Tyrosine in Proximity
to Ruthenium Photocatalysts. Chem. Commun. 2018, 54
(46), 5871–5874.
Gavrilyuk, J.; Ban, H.; Nagano, M.; Hakamata, W.; Barbas,
C. F. Formylbenzene Diazonium Hexafluorophosphate Re-
agent for Tyrosine-Selective Modification of Proteins and
the Introduction of a Bioorthogonal Aldehyde. Bioconjug.
Chem. 2012, 23 (12), 2321–2328.
Hooker, J. M.; Kovacs, E. W.; Francis, M. B. Interior Sur-
face Modification of Bacteriophage MS2. J. Am. Chem. Soc.
2004, 126 (12), 3718–3719.
Schlick, T. L.; Ding, Z.; Kovacs, E. W.; Francis, M. B.
Dual-Surface Modification of the Tobacco Mosaic Virus. J.
Am. Chem. Soc. 2005, 127 (11), 3718–3723.
De Bruycker, K.; Billiet, S.; Houck, H. A.; Chattopadhyay,
S.; Winne, J. M.; Du Prez, F. E. Triazolinediones as Highly
Enabling Synthetic Tools. Chem. Rev. 2016, 116 (6), 3919–
3974.
Billiet, S.; De Bruycker, K.; Driessen, F.; Goossens, H.; Van
Speybroeck, V.; Winne, J. M.; Du Prez, F. E. Triazolinedi-
ones Enable Ultrafast and Reversible Click Chemistry for
the Design of Dynamic Polymer Systems. Nat. Chem. 2014,
6 (9), 815–821.
Sato, S.; Nakamura, K.; Nakamura, H. Tyrosine-Specific
Chemical Modification with in Situ Hemin-Activated Lumi-
nol Derivatives. ACS Chem. Biol. 2015, 10 (11), 2633–
2640.
Sato, S.; Nakamura, K.; Nakamura, H. Horseradish-Peroxi-
dase-Catalyzed Tyrosine Click Reaction. ChemBioChem
2017, 18 (5), 475–478.
Ban, H.; Gavrilyuk, J.; Barbas, Carlos F. Tyrosine Biocon-
jugation through Aqueous Ene-Type Reactions: A Click-
Like Reaction for Tyrosine. J. Am. Chem. Soc. 2010, 132
(5), 1523–1525.
Ban, H.; Nagano, M.; Gavrilyuk, J.; Hakamata, W.; In-
okuma, T.; Barbas, C. F. Facile and Stabile Linkages
through Tyrosine: Bioconjugation Strategies with the Tyro-
sine-Click Reaction. Bioconjug. Chem. 2013, 24 (4), 520–
532.
Hu, Q.-Y.; Allan, M.; Adamo, R.; Quinn, D.; Zhai, H.; Wu,
G.; Clark, K.; Zhou, J.; Ortiz, S.; Wang, B.; Danieli, E.;
Crotti, S.; Tontini, M.; Brogioni, G.; Berti, F. Synthesis of a
Well-Defined Glycoconjugate Vaccine by a Tyrosine-Se-
lective Conjugation Strategy. Chem. Sci. 2013, 4 (10), 3827-
3832.
Madl, C. M.; Heilshorn, S. C. Tyrosine-Selective Function-
alization for Bio-Orthogonal Cross-Linking of Engineered
Protein Hydrogels. Bioconjug. Chem. 2017, 28 (3), 724-
730.
S. Electrochemical Synthesis of Diverse Sulfonamide De-
rivatives Depending on the Potential Electrode and Their
Antimicrobial Activity Evaluation. New J. Chem. 2017, 41
(16), 8279–8288.
Lorans, J.; Hurvois, J. P.; Moinet, C.; Chapuzet, J. M.; Les-
sard, J.; Tallec, A.; Shono, T.; Toftlund, H. Electrosynthesis
of Cyclic Alpha-Carbonylazo Compounds. Chemical Sta-
bility of the Electrogenerated Dienophiles and in Situ Trap-
ping of Dienes. Acta Chem. Scand. 1999, 53, 807–813.
Laure, W.; De Bruycker, K.; Espeel, P.; Fournier, D.;
Woisel, P.; Du Prez, F. E.; Lyskawa, J. Ultrafast Tailoring
of Carbon Surfaces via Electrochemically Attached Tria-
zolinediones. Langmuir 2018, 34 (7), 2397-2402.
Adamo, R. Advancing Homogeneous Antimicrobial Gly-
coconjugate Vaccines. Acc. Chem. Res. 2017, 50 (5), 1270–
1279.
Prescher, J. A.; Dube, D. H.; Bertozzi, C. R. Chemical Re-
modelling of Cell Surfaces in Living Animals. Nature 2004,
430 (7002), 873–877.
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K.
B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-
Catalyzed Regioselective “Ligation” of Azides and Termi-
nal Alkynes. Angew. Chem. Int. Ed. 2002, 41 (14), 2596–
2599.
Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles
on Solid Phase:ꢀ [1,2,3]-Triazoles by Regiospecific Cop-
per(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal
Alkynes to Azides. J. Org. Chem. 2002, 67 (9), 3057–3064.
Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A Strain-Pro-
moted [3 + 2] Azide−Alkyne Cycloaddition for Covalent
Modification of Biomolecules in Living Systems. J. Am.
Chem. Soc. 2004, 126 (46), 15046–15047.
Ning, X.; Guo, J.; Wolfert, M. A.; Boons, G.-J. Visualizing
Metabolically Labeled Glycoconjugates of Living Cells by
Copper‐Free and Fast Huisgen Cycloadditions. Angew.
Chem. Int. Ed. 2008, 47 (12), 2253–2255.
Leonard, J. P.; Coleman, M.; Ketas, J. C.; Chadburn, A.;
Ely, S.; Furman, R. R.; Wegener, W. A.; Hansen, H. J.;
Ziccardi, H.; Eschenberg, M.; et al. Phase I/II Trial of
Epratuzumab (Humanized Anti-CD22 Antibody) in Indo-
lent Non-Hodgkin’s Lymphoma. J. Clin. Oncol. 2003, 21
(16), 3051–3059.
Fu, L.-H.; Qi, C.; Lin, J.; Huang, P. Catalytic Chemistry of
Glucose Oxidase in Cancer Diagnosis and Treatment.
Chem. Soc. Rev. 2018, 47 (17), 6454–6472.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(13)
(14)
(15)
(27)
(28)
(29)
(16)
(17)
(30)
(31)
(32)
(33)
(18)
(19)
(20)
(21)
(34)
(35)
(22)
(23)
Claiborne, A.; Fridovich, I. Chemical and Enzymic Inter-
mediates in the Peroxidation of O-Dianisidine by Horserad-
ish Peroxidase. 1. Spectral Properties of the Products of Di-
anisidine Oxidation. Biochemistry 1979, 18 (11), 2324–
2329.
Alstanei, A.-M.; Hornoiu, C.; Aycard, J.-P.; Carles, M.; Vo-
lanschi, E. Electrochemical Behaviour and Redox Reactiv-
ity of Some 4-R-1,2,4-Triazolin-3,5-Diones. J. Electroanal.
Chem. 2003, 542, 13–21.
ACS Paragon Plus Environment