Inorganic Chemistry
Article
(37) Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D.
Water adsorption in MOFs: fundamentals and applications. Chem.
Soc. Rev. 2014, 43, 5594−5617.
(56) Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.;
Yaghi, O. M. Supercapacitors of nanocrystalline Metal-Organic
Frameworks. ACS Nano 2014, 8, 7451−7457.
(57) Wang, B.; Huang, H.; Lv, X.-L.; Xie, Y.; Li, M.; Li, J.-R. Tuning
CO2 selective adsorption over N2 and CH4 in UiO-67 analogues
through ligand functionalization. Inorg. Chem. 2014, 53, 9254−9259.
(58) Nguyen, P. T. K.; Nguyen, H. T. D.; Nguyen, H. N.; Trickett,
(38) Gascon, J.; Kapteijn, F. Metal-Organic Framework membranes-
high potential, bright future. Angew. Chem., Int. Ed. 2010, 49, 1530−
1532.
(39) Keskin, S.; Van Heest, T. M.; Sholl, D. S. Can Metal-Organic
Framework materials play a useful role in large-scale carbon dioxide
separations. ChemSusChem 2010, 3, 879−891.
(40) Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C.
Zr-based metal−organic frameworks: design, synthesis, structure, and
applications. Chem. Soc. Rev. 2016, 45, 2327−2367.
(41) Li, P. Z.; Wang, X. J.; Liu, J.; Lim, J. S.; Zou, R.; Zhao, Y. A
triazole-containing Metal-Organic Framework as a highly effective and
substrate size-dependent catalyst for CO2 conversion. J. Am. Chem.
Soc. 2016, 138, 2142−2145.
(42) Gu, J.-M.; Kim, W.-S.; Huh, S. Size-dependent catalysis by
DABCO-functionalized Zn-MOF with one-dimensional channels.
Dalton Trans. 2011, 40, 10826−10829.
(43) Ugale, B.; Dhankhar, S. S.; Nagaraja, C. M. Construction of 3-
fold-interpenetrated three-dimensional Metal-Organic Frameworks of
Nickel(II) for highly efficient capture and conversion of carbon
dioxide. Inorg. Chem. 2016, 55, 9757−9766.
(44) Fan, Y.; Li, J.; Ren, Y.; Jiang, H. A Ni(salen)-based Metal-
Organic Framework: synthesis, structure, and catalytic performance
for CO2 cycloaddition with epoxides. Eur. J. Inorg. Chem. 2017, 2017,
4982−4989.
(45) Zhao, D.; Liu, X.-H.; Guo, J.-H.; Xu, H.-J.; Zhao, Y.; Lu, Y.;
Sun, W.-Y. Porous Metal-Organic Frameworks with chelating
multiaminesites for selective adsorption and chemical conversion of
carbon dioxide. Inorg. Chem. 2018, 57, 2695−2704.
(46) Kim, J.; Kim, S.-N.; Jang, H.-G.; Seo, G.; Ahn, W.-S. CO2
cycloaddition of styrene oxide over MOF catalysts. Appl. Catal., A
2013, 453, 175−180.
́
C. A.; Ton, Q. T.; Gutierrez-Puebla, E.; Monge, M. A.; Cordova, K.
́
E.; Gandara, F. New Metal-Organic Frameworks for chemical fixation
of CO2. ACS Appl. Mater. Interfaces 2018, 10, 733−744.
(59) Qin, J.-S.; Yuan, S.; Lollar, C.; Pang, J.; Alsalme, A.; Zhou, H.-
C. Stable metal-organic frameworks as a host platform for catalysis
and biomimetics. Chem. Commun. 2018, 54, 4231−4249.
(60) Mondloch, J. E.; Katz, M. J.; Isley III, W. C.; Ghosh, P.; Liao,
P.; Bury, W.; Wagner, G. W.; Hall, M. G.; DeCoste, J. B.; Peterson, G.
W.; Snurr, R. Q.; Cramer, C. J.; Hupp, J. T.; Farha, O. K. Destruction
of chemical warfare agents using metal-organic frameworks. Nat.
Mater. 2015, 14, 512.
(61) Huang, N.; Yuan, S.; Drake, H.; Yang, X.; Pang, J.; Qin, J.; Li, J.;
Zhang, Y.; Wang, Q.; Jiang, D.; Zhou, H.-C. Systematic engineering of
single substitution in Zirconium Metal-Organic Frameworks toward
high-performance catalysis. J. Am. Chem. Soc. 2017, 139, 18590−
18597.
(62) Noh, H.; Cui, Y.; Peters, A. W.; Pahls, D. R.; Ortuno, M. A.;
̃
Vermeulen, N. A.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O.
K. An exceptionally stable Metal-Organic Framework supported
molybdenum(VI) oxide catalyst for cyclohexene epoxidation. J. Am.
Chem. Soc. 2016, 138, 14720−14726.
(63) Zhu, J.; Usov, P. M.; Xu, W.; Celis-Salazar, P. J.; Lin, S.;
Kessinger, M. C.; Landaverde-Alvarado, C.; Cai, M.; May, A. M.;
Slebodnick, C.; Zhu, D.; Senanayake, S. D.; Morris, A. J. A New Class
of metal-cyclam-based Zirconium Metal-Organic Frameworks for
CO2 adsorption and chemical fixation. J. Am. Chem. Soc. 2018, 140,
993−1003.
(64) Sheldrick, G. M. Crystal structure refinement with SHELXL.
Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3−8.
(65) Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied
Topological Analysis of Crystal Structures with the Program Package
ToposPro. Cryst. Growth Des. 2014, 14, 3576−3586.
(47) Mo, Z.-W.; Zhou, H.-L.; Zhou, D.-D.; Lin, R.-B.; Liao, P.-Q.;
He, C.-T.; Zhang, W.-X.; Chen, X.-M.; Zhang, J.-P. Mesoporous
Metal-Organic Frameworks with exceptionally high working capacities
for adsorption heat transformation. Adv. Mater. 2018, 30, 1704350.
(48) Klein, N.; Senkovska, I.; Gedrich, K.; Stoeck, U.; Henschel, A.;
Mueller, U.; Kaskel, S. A mesoporous Metal-Organic Framework.
Angew. Chem., Int. Ed. 2009, 48, 9954−9957.
(49) Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C.
Zirconium-metalloporphyrin PCN-222: mesoporous Metal-Organic
Frameworks with ultrahigh stability as biomimetic catalysts. Angew.
Chem., Int. Ed. 2012, 51, 10307−10310.
(66) Yuan, S.; Zou, L.; Li, H.; Chen, Y.-P.; Qin, J.; Zhang, Q.; Lu,
W.; Hall, M. B.; Zhou, H.-C. Flexible Zirconium Metal-Organic
Frameworks as bioinspired switchable catalysts. Angew. Chem., Int. Ed.
2016, 55, 10776−10780.
(67) Gao, C. Y.; Ai, J.; Tian, H. R.; Wu, D.; Sun, Z.-M. An
ultrastable zirconium-phosphonate framework as bifunctional catalyst
for highly active CO2 chemical transformation. Chem. Commun. 2017,
53, 1293−1296.
(50) Feng, D.; Wang, K.; Su, J.; Liu, T.-F.; Park, J.; Wei, Z.; Bosch,
M.; Yakovenko, A.; Zou, X.; Zhou, H.-C. A highly stable
zeotypemesoporous zirconium Metal-Organic Framework with ultra-
largepores. Angew. Chem., Int. Ed. 2015, 54, 149−154.
́
(68) Guillerm, V.; Weselinski, Ł. J.; Belmabkhout, Y.; Cairns, A. J.;
D’Elia, V.; Wojtas, Ł.; Adil, K.; Eddaoudi, M. Discovery and
introduction of a (3,18)-connected net as an ideal blueprint for the
design of metal−organic frameworks. Nat. Chem. 2014, 6, 673.
(69) Beyzavi, M. H.; Klet, R. C.; Tussupbayev, S.; Borycz, J.;
Vermeulen, N. A.; Cramer, C. J.; Stoddart, J. F.; Hupp, J. T.; Farha, O.
K. A Hafnium-Based Metal-Organic Framework as an Efficient and
Multifunctional Catalyst for Facile CO2 Fixation and Regioselective
and Enantioretentive Epoxide Activation. J. Am. Chem. Soc. 2014, 136,
15861−15864.
(51) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti,
C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building
brick forming Metal Organic Frameworks with exceptional stability. J.
Am. Chem. Soc. 2008, 130, 13850−13851.
́
(52) Furukawa, H.; Gandara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W.
L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous Metal-
Organic Frameworks and related materials. J. Am. Chem. Soc. 2014,
136, 4369−4381.
(70) Li, J.; Ren, Y.; Yue, C.; Fan, Y.; Qi, C.; Jiang, H. Highly Stable
Chiral Zirconium−Metallosalen Frameworks for CO2 Conversion and
Asymmetric C-H Azidation. ACS Appl. Mater. Interfaces 2018, 10,
36047−36057.
(71) Liang, J.; Chen, R.-P.; Wang, X.-Y.; Liu, T.-T.; Wang, X.-S.;
Huang, Y.-B.; Cao, R. Postsynthetic ionization of an imidazole-
containing metal-organic framework for the cycloaddition of carbon
dioxide and epoxides. Chem. Sci. 2017, 8, 1570−1575.
(72) Zhou, Z.; He, C.; Xiu, J.; Yang, L.; Duan, C. Metal-Organic
Polymers Containing Discrete Single-Walled Nanotube as a
Heterogeneous Catalyst for the Cycloaddition of Carbon Dioxide to
Epoxides. J. Am. Chem. Soc. 2015, 137, 15066−15069.
(53) Jiang, H.-L.; Feng, D.; Liu, T.-F.; Li, J.-R.; Zhou, H.-C. Pore
surface engineering with controlled loadings of functional groups via
click chemistry in highly stable Metal-Organic Frameworks. J. Am.
Chem. Soc. 2012, 134, 14690−14693.
(54) Schaate, A.; Roy, P.; Preuße, T.; Lohmeier, S. J.; Godt, A.;
Behrens, P. Porous Interpenetrated Zirconium-Organic Frameworks
(PIZOFs): A chemically versatile family of Metal-Organic Frame-
works. Chem. - Eur. J. 2011, 17, 9320−9325.
(55) Garibay, S. J.; Cohen, S. M. Isoreticular synthesis and
modification of frameworks with the UiO-66 topology. Chem.
Commun. 2010, 46, 7700−7702.
G
Inorg. Chem. XXXX, XXX, XXX−XXX