326
J. A. Caputo et al.
Cluster
Synlett
(g) Chakrabarti, A.; Konishi, H.; Yamaguchi, M.; Schneider, U.;
Kobayashi, S. Angew. Chem. Int. Ed. 2010, 49, 1838.
(h) Schneider, U.; Chen, I. H.; Kobayashi, S. Org. Lett. 2008, 10,
737. (i) Silverio, D. L.; Torker, S.; Pilyugina, T.; Vieira, E. M.;
Snapper, M. L.; Haeffner, F.; Hoveyda, A. H. Nature (London, U.K.)
2013, 494, 216.
(21) (a) Cahiez, G.; Duplais, C.; Buendia, J. Chem. Rev. 2009, 109,
1434. (b) Reetz, M. T.; Rölfing, K.; Griebenow, N. Tetrahedron
Lett. 1994, 35, 1969.
(22) (a) Lu, W.; Chan, T. H. J. Org. Chem. 2000, 65, 8589. (b) Liu, M.;
Shen, A.; Sun, X.; Deng, F.; Xu, M.; Lin, G. Chem. Commun. 2010,
46, 8460. (c) Hirabayashi, R.; Ogawa, C.; Sugiura, M.; Kobayashi,
S. J. Am. Chem. Soc. 2001, 123, 9493.
(10) (a) Sun, X.; Liu, M.; Xu, M.; Lin, G. Org. Lett. 2008, 10, 1259.
(b) Foubelo, F.; Yus, M. Eur. J. Org. Chem. 2014, 485. (c) Tan, K. L.;
Jacobsen, E. N. Angew. Chem. Int. Ed. 2007, 46, 1315. (d) Kargbo,
R.; Takahashi, Y.; Bhor, S.; Cook, G. R.; Lloyd-Jones, G. C.;
Shepperson, I. R. J. Am. Chem. Soc. 2007, 129, 3846.
(11) (a) Sebelius, S.; Wallner, O. A.; Szabó, K. J. Org. Lett. 2003, 5,
3065. (b) Barros, O. S. d. R.; Sirvent, J. A.; Foubelo, F.; Yus, M.
Chem. Commun. 2014, 50, 6898.
(12) An alternative strategy is the aza-Cope reaction, see: Ren, H.;
Wulff, W. D. J. Am. Chem. Soc. 2011, 133, 5656.
(13) Paulo, G.; Gosmini, C.; Périchon, J. Lett. Org. Chem. 2004, 1, 105.
(14) (a) Durandetti, M.; Gosmini, C.; Périchon, J. Tetrahedron 2007,
63, 1146. (b) Zhao, C.; Tan, Z.; Liang, Z.; Deng, W.; Gong, H.
Synthesis 2014, 46, 1901.
(23) Everson, D. A.; George, D. T.; Weix, D. J. Org. Synth. 2013, 90, 200.
(24) Typical Procedure for the Allylation of α-Amido Sulfones
On the benchtop, an oven-dried 1-dram vial equipped with a
Teflon-coated stir bar was charged with 4,4′-di-tert-butyl-2,2′-
bipyridine (2.7 mg, 0.0100 mmol), NiCl2(dme) (2.0 mg, 0.0100
mmol), tert-butyl cyclohexyl(phenylsulfonyl)methylcarbamate
(177 mg, 0.500 mmol, 1.00 equiv), N,N-dimethylacetamide
(DMA) (1.00 mL), a solution of cinnamyl acetate (91.8 μL, 0.550
mmol, 1.10 equiv in 1.00 mL DMA), Et3N (1.40 μL, 0.0100
mmol), dodecane (10.0 μL), and Mn0 (54.9 mg, 1.00 mmol). The
reaction vial was then capped with a screw cap fitted with a
PTFE-faced silicone septum and stirred (1200 rpm) at 40 °C.
After 19 h, the reaction mixture was then filtered through a
short silica pad (1.5 cm wide × 2 cm high), and the pad was
washed with Et2O (75 mL) before the filtrate was concentrated
in vacuo. The residue was then purified by flash chromatogra-
phy (hexanes–acetone, 95:5) to afford the pure homoallylic
amine (Table 2, entry 5) as a white solid (124 mg, 75% yield).
X-ray crystallography confirmed that the syn isomer was
obtained; mp 101–103 °C. Due to the existence of rotamers at
ambient temperature, the 1H NMR spectrum was obtained at
55 °C: 1H NMR (400 MHz, CDCl3, 55 °C): δ = 7.28–7.15 (m, 5 H),
6.03 (dt, J = 17.1, 8.8 Hz, 1 H), 5.09–5.05 (m, 2 H), 4.06 (br s, 1
H), 3.86 (br s, 1 H), 3.43 (t, J = 8.2 Hz, 1 H), 1.29 (s, 9 H), 1.75–
0.86 (series of m, 11 H). 13C NMR (126 MHz, CDCl3): δ = 155.9,
141.6, 139.8, 128.5, 128.4, 126.5, 115.9, 78.8, 57.7, 52.9, 39.4,
31.2, 28.4, 28.3, 26.5, 26.4, 26.3. IR: 3341, 2924, 1678, 1535,
1173 cm–1. LRMS (ESI+): m/z = 352.3 [M + Na+]. HRMS (ESI+): m/z
[M + H+] calcd for C21H32NO2: 330.243; found: 330.244. X-ray
quality crystals were grown by slow evaporation of acetone.
(15) Tan, Z.; Wan, X.; Zang, Z.; Qian, Q.; Deng, W.; Gong, H. Chem.
Commun. 2014, 50, 3827.
(16) (a) Petrini, M.; Profeta, R.; Righi, P. J. Org. Chem. 2002, 67, 4530.
(b) Yin, B.; Zhang, Y.; Xu, L. Synthesis 2010, 3583. (c) Zaugg, H. E.
Synthesis 1984, 85. (d) Engberts, J. B. F. N.; Strating, J. Recl. Trav.
Chim. Pays-Bas 1965, 84, 942. (e) Kobayashi, T.; Ishida, N.;
Hiraoka, T. J. Chem. Soc., Chem. Commun. 1980, 736. (f) Brown, D.
S.; Hansson, T.; Ley, S. V. Synlett 1990, 48.
(17) Zhang, H.; Lian, C.; Yuan, W.; Zhang, X. Synlett 2012, 23, 1339.
(18) We get substantially the same results with a preformed imine.
(19) Crystallographic data for the compound reported in Table 2,
entry 5 has been deposited with the Cambridge Crystallo-
graphic Data Centre (CCDC 1022004). This data can be obtained
data_request/cif.
(20) Gong observed similar diastereoselectivity with crotyl acetate
for the reductive allyation of aldehydes using nickel. See ref. 15.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 323–326