Organic Letters
Letter
and hydrolysis of the resulting formate under air gave rise to
biphenylene quinone methide 38 in 51% total yield from 34.
Soenen, D. R.; Danishefsky, S. J.; Boger, D. L. Cancer Chemother.
Pharmacol. 2005, 56, 379.
21
(5) Hamasaki, A.; Zimpleman, J. M.; Hwang, I.; Boger, D. L. J. Am.
Although not anticipated, treatment with 2.0 equiv of NBS under
the standard conditions facilitated the remarkably selective
dibromination affording dibromide 40 in 78% yield. Subsequent
Suzuki−Miyaura coupling with arylboronic acid 30 gave fully
decorated biphenylene quinone methide 42 in quantitative
Chem. Soc. 2005, 127, 10767.
(
(
6) Peschko, C.; Steglich, W. Tetrahedron Lett. 2000, 41, 9477.
7) (a) Park, J.; Kim, D.-H.; Das, T.; Cho, C.-G. Org. Lett. 2016, 18,
5
098. (b) Lim, B.-Y.; Jung, B.-E.; Cho, C.-G. Org. Lett. 2014, 16, 4492.
(c) Park, J.; Kim, S.-Y.; Kim, J.-E.; Cho, C.-G. Org. Lett. 2014, 16, 178.
2
2
yield. Removal of the methyl protecting groups with BBr gave
3
(d) Park, I.-K.; Park, J.; Cho, C.-G. Angew. Chem., Int. Ed. 2012, 51, 2496.
(e) Lim, B.-Y.; Choi, M.-K.; Cho, C.-G. Tetrahedron Lett. 2011, 52, 6015.
(f) Suh, S.-E.; Park, I.-K.; Lim, B.-Y.; Cho, C.-G. Eur. J. Org. Chem. 2011,
2011, 455. (g) Kim, H.-Y.; Lee, W.-J.; Kang, H.-M.; Cho, C.-G. Org. Lett.
ningalin D in 13% total yield over 10 steps from 3-methyl-5-
bromo-2-pyrone 19. Notably, a simple aqueous workup afforded
analytically pure ningalin D in 99% yield, in contrast to the
previous approach, which required reversed phase HPLC
2
007, 9, 3185. (h) Lim, Y.-K.; Jung, J.-W.; Lee, H.; Cho, C.-G. J. Org.
Chem. 2004, 69, 5778.
8) (a) Cho, H.-K.; Tam, N. T.; Cho, C.-G. Bull. Korean Chem. Soc.
2
3
purification. Following the successful synthesis of ningalin D,
we attempted the synthesis of ningalin G by subjecting
dibenzocarbazole 13a to the same reaction sequence used for
ningalin D. N-Phenethylation and a series of oxidations including
DDQ-mediated methyl oxidations and phenylseleninic acid and
air oxidations gave 39 in 41% overall yield. Highly regioselective
brominations with 2.0 equiv of NBS gave 41 in 78% yield.
Subsequent installation of the F and G rings via Suzuki−Miyaura
coupling with arylboronic acid 30 afforded fully decorated
biphenylene quinone methide 43 in 85% yield. Demethylation of
the phenolic alcohol protecting groups gave ningalin G (3) in 7%
total yield over 10 linear steps from 2-pyrone 19. Again, a simple
(
2
010, 31, 3382. (b) Ryu, K.; Cho, Y.-S.; Jung, S.-I.; Cho, C.-G. Org. Lett.
2
006, 8, 3343.
(
9) (a) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M. J.
Am. Chem. Soc. 2005, 127, 15028. (b) Perez, D.; Guitian, E.; Castedo, L. J.
Org. Chem. 1992, 57, 5911.
́
́
(10) Shu, Z.; Ye, Y.; Deng, Y.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed.
2013, 52, 10573.
(11) Gom
Tetrahedron 1993, 49, 1251.
12) Medina, J. M.; Mackey, J. L.; Garg, N. K.; Houk, K. N. J. Am. Chem.
́ ́ ́
ez, B.; Martín, G.; Guitian, E.; Castedo, L.; Saa, J. M.
(
Soc. 2014, 136, 15798 and references cited therein.
24
(13) 3-Methyl-5-bromo-2-pyrone (19) undergoes a highly regiose-
lective Diels−Alder reaction with acrolein to afford the corresponding
cycloadduct as a result of the preferred interaction between the
electronically rich C6 of 2-pyrone and deficient (more electrophilic) β-
carbon of dienophile (see ref 8b for details).
aqueous workup afforded analytically pure ningalin G.
In summary, we devised a flexible synthetic strategy that
allows for the syntheses of ningalins D and G. The TMS-OTf/
2
,6-lutidine-mediated [3,3]-sigmatropic rearrangement and cycliza-
tion cascades of highly substituted dinaphthyl hydrazides provided
rapid access to the key intermediates, 7H-dibenzo[c,g]carbazoles
ASSOCIATED CONTENT
■
(
14) Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 14844.
*
S
Supporting Information
(15) Chen, L.-A.; Wang, C.-F.; Gin, M.-G.; Zhang, J.-L.; Huang, P.-Q.;
Wang, A.-E. Asian J. Org. Chem. 2013, 2, 294.
(
16) (a) Majetich, G.; Hicks, R.; Reister, S. J. Org. Chem. 1997, 62, 4321.
b) Racys, D. T.; Sharif, S. A. I.; Pimlott, S. L.; Sutherland, A. J. Org. Chem.
2016, 81, 772.
(
Experimental procedures and spectral data (PDF)
(
(
17) Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17, 2886.
18) (a) Liu, J.; Zheng, H.-X.; Yao, C.-Z.; Sun, B.-F.; Kang, Y.-B. J. Am.
AUTHOR INFORMATION
■
*
Chem. Soc. 2016, 138, 3294. (b)Guo, S.;Wan, G.;Sun, S.;Jiang, Y.; Yu, J.-
T.; Cheng, J. Chem. Commun. 2015, 51, 5085.
(
19) (a) Mal, D.; Roy, J. Tetrahedron 2015, 71, 1247. (b) Thomas, C.;
Knolker, H. J. Tetrahedron Lett. 2013, 54, 591. (c) Nicolaou, K. C.; Baran,
P. S.; Zhong, Y.-L. J. Am. Chem. Soc. 2001, 123, 3183.
̈
ORCID
(
(
20) Lee, H.; Harvey, R. G. J. Org. Chem. 1988, 53, 4587.
21) (a) Dakin, H. D. Am. Chem. J. 1909, 42, 477. (b) Friedmann, C. J.;
Notes
Ay, S.; Brase, S. J. Org. Chem. 2010, 75, 4612. (c) Abe, T.; Ikeda, T.;
Choshi, T.;Hibino,S.;Hatae, N.;Toyata, E.;Yanada, R.;Ishikura, M. Eur.
J. Org. Chem. 2012, 2012, 5018.
̈
The authors declare no competing financial interest.
(
22) The reported 13C NMR spectrum of permethyl ningalin D (42)
ACKNOWLEDGMENTS
■
has 12 methyl peaks (ref 5). On the other hand, our sample shows 6 well-
resolved methyl peaks under an identical 13C NMR setup.
This work was supported by the grants from the National
Research Foundation of Korea (2014R1A5A1011165).
(23) In the synthesis reported by Boger and co-workers, reversed phase
HPLC purification might have been necessary due to the possible
presence of inseparable impurities with permethylated ningalin D 42.
REFERENCES
1) Kang, H.; Fenical, W. J. Org. Chem. 1997, 62, 3254.
2) (a) Schmidt, A. W.; Reddy, K. R.; Knolker, H.-J. Chem. Rev. 2012,
̈
12, 3193. (b) Chan, G. W.; Francis, T.; Thureen, D. R.; Offen, P. H.;
Pierce, N. J.; Westley, J. W.; Johnson, R. K.; Faulkner, D. J. J. Org. Chem.
993, 58, 2544.
3) Plisson, F.; Conte, M.; Khalil, Z.; Huang, X.-C.; Piggott, A. M.;
Capon, R. J. ChemMedChem 2012, 7, 983.
4) (a) Bailly, C. Mar. Drugs 2015, 13, 1105. (b) Sugumaran, M.;
■
(
24) All spectral data are consistent with the structure. However, a
(
(
13
discrepancy in C NMR spectrum was noticed; we observed C1′
1
1
(
(
Robinson, W. E. Mar. Drugs2010, 8, 2906. (c)Fan, H.;Peng, J.;Hamann,
M. T.; Hu, J.-F. Chem. Rev. 2008, 108, 264. (d) Chou, T.-C.; Guan, Y.;
D
Org. Lett. XXXX, XXX, XXX−XXX