Journal of Medicinal Chemistry
Page 12 of 13
elucidating virus-host interactions. Current Opinion in Virology.
2012, 2, 784–792.
doi: 10.1038/s41467-019-11083-2.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(21) Oda, S.; Schröder, M.; Khan, A. R. Structural Basis for
Targeting of Human RNA Helicase DDX3 by Poxvirus Protein K7.
Structure. 2009, 17, 1528-1537.
(22) Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee,
D. F.; Barnard, D. L.; Gowen, B. B.; Julander, J. G.; Morrey, J. D. T-705
(favipiravir) and related compounds: Novel broad-spectrum
inhibitors of RNA viral infections. Antiviral Research. 2009, 82, 95–
102.
(23) Wolf, M. C.; Freiberg, A. N.; Zhang, T.; Akyol-Ataman, Z.;
Grock, A.; Hong, P. W.; Li, J.; Watson, N. F.; Fang, A. Q.; Aguilar, H. C.;
Porotto, M.; Honko, A. N.; Damoiseaux, R.; Miller, J. P.; Woodson, S.
E.; Chamtasirivisal, S.; Fontanes, V.; Negrete, O. A.; Krogstad, P.;
Dasgupta, A.; Moscona, A.; Hensley. L. E.; Whelan, S. P.; Faull, K. F.;
Holbrook, R.; Jung, M. E.; Lee, B. A broad-spectrum antiviral
targeting entry of enveloped viruses. Proceedings of the National
Academy of Sciences. 2010, 107, 3157–3162.
(24) Hoffmann, H.-H.; Kunz, A., Simon, V. A.; Palese, P.; Shaw, M.
L. Broad-spectrum antiviral that interferes with de novo
pyrimidine biosynthesis. Proceedings of the National Academy of
Sciences. 2011, 108, 5777–5782.
(4) Soto-Rifo, R.; Rubilar, P. S.; Ohlmann, T. The DEAD-box
helicase DDX3 substitutes for the cap-binding protein eIF4E to
promote compartmentalized translation initiation of the HIV-1
genomic RNA. Nucleic Acids Research. 2013, 41, 6286-6299.
(5) Ariumi, Y. Multiple functions of DDX3 RNA helicase in gene
regulation, tumorigenesis, and viral infection. Frontiers in Genetics.
2
014
doi: 10.3389/fgene.2014.00423.
6) He, T.-Y.; Wu, D.-W.; Lin, P.-L.; Wang, L.; Huang, C.-C.; Chou,
(
M.-C.; Lee, H. DDX3 promotes tumor invasion in colorectal cancer
via the CK1ε/Dvl2 axis. Scientific Reports. 2016, 6, 21483.
(7) Botlagunta, M.; Vesuna, F.; Mironchik, Y.; Raman, A.; Lisok,
A.; Winnard, P.; Mukadam, S.; Van Diest, P.; Chen, J. H.; Farabaugh,
P.; Patel, A. H.; Raman, V. Oncogenic role of DDX3 in breast cancer
biogenesis. Oncogene. 2008, 27, 3912-3922.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
8) Bol, G. M.; Xie, M.; Raman, V. DDX3, a potential target for
cancer treatment. Molecular Cancer. 2015.
doi: 10.1186/s12943-015-0461-7.
(9) Kondaskar, A.; Kondaskar, S.; Fishbein, J. C.; Carter-Cooper,
B. A.; Lapidus, R. G.; Sadowska, M.; Edelman, M. J.; Hosmane, R. S.
Structure-based drug design and potent anti-cancer activity of
(25) Lee, S. J.; Wang, J. Y. J. Exploiting the promiscuity of
imatinib. Journal of Biology. 2009, 8, 30.
(26) Brai, A.; Riva, V.; Saladini, F.; Zamperini, C.; Trivisani, C. I.;
Garbelli, A.; Pennisi, C.; Giannini, A.; Boccuto, A.; Bugli, F.; Martini,
M.; Sanguinetti, M.; Zazzi, M.; Dreassi, E.; Maga, G.; Botta M. DDX3X
inhibitors, an effective way to overcome HIV-1 resistance.
tricyclic
Bioorganic & Medicinal Chemistry. 2013, 21, 618–631.
10) Bol, G. M.; Vesuna, F.; Xie, M.; Zeng, J.; Aziz, K.; Gandhi, N.;
5:7:5-fused
diimidazo[4,5-d:4′,5′-f][1,3]diazepines.
(
Levine, A.; Irving, A.; Korz, D.; Tantravedi, S.; Heerma van Voss, M.
R.; Gabrielson, K., Bordt, E. A.; Polster, B. M.; Cope, L.; van der Groep,
P.; Kondaskar, R. S.; van der Wall, E.; van Diest, P. J.; Tran, P. T.;
Raman, V. Targeting DDX3 with a small molecule inhibitor for lung
cancer therapy. EMBO Molecular Medicine. 2015, 7, 648–669.
European
Journal
of
Medicinal
Chemistry
2020
(27) Brai, A.; Martelli, F.; Riva, V.; Garbelli, A.; Fazi, R.;
Zamperini, C.; Pollutri, A.; Falsitta, L.; Ronzini, S.; Maccari, L.; Maga,
G.; Giannecchini, S.; Botta, M. DDX3X Helicase Inhibitors as a New
Strategy To Fight the West Nile Virus Infection. Journal of Medicinal
Chemistry. 2019, 62, 2333–2347.
(28) Riva, V.; Maga, G. From the magic bullet to the magic
target: exploiting the diverse roles of DDX3X in viral infections and
tumorigenesis. Future Medicinal Chemistry. 2019, 11, 1357-1381.
(29) Brai, A.; Boccuto, A.; Monti, M.; Marchi, S.; Vicenti, I.;
Saladini, F.; Trivisani C.I.; Pollutri, A.; Trombetta, C.M.; Montomoli,
E.; Riva, V.; Garbelli, A.; Nola, E. M.; Zazzi, M.; Maga, G.; Dreassi, E.;
Botta, M. Exploring the Implication of DDX3X in DENV Infection:
Discovery of the First-in-Class DDX3X Fluorescent Inhibitor. ACS
Med Chem Lett. 2020, 11, 956–962.
(30) Manni, M.; Guglielmino, C. R.; Scolari, F.; Vega-Rúa, A.;
Failloux, A.-B.; Somboon, P.; Lisa, A.; Savini, G.; Bonizzoni, M.;
Gomulski, L. M.; Malacrida, A. R.; Gasperi, G. Genetic evidence for a
worldwide chaotic dispersion pattern of the arbovirus vector,
Aedes albopictus. PLOS Neglected Tropical Diseases. 2017.
doi: 10.1371/journal.pntd.0005332.
(
11) Garbelli, A.; Beermann, S.; Di Cicco, G.; Dietrich, U.; Maga,
G. A motif unique to the human dead-box protein DDX3 is
important for nucleic acid binding, ATP hydrolysis, RNA/DNA
unwinding and HIV-1 replication. PLoS ONE. 2011.
doi: 10.1371/journal.pone.0019810.
(12) Schröder, M. Viruses and the human DEAD-box helicase
DDX3: inhibition or exploitation? Biochemical Society Transactions.
2
011, 39, 679–683.
(
13) Schröder, M.; Baran, M.; Bowie, A. G. Viral targeting of
DEAD box protein 3 reveals its role in TBK1/IKKε-mediated IRF
activation. EMBO Journal. 2008, 27, 2147-2157.
(14) Garbelli, A.; Riva, V.; Crespan, E.; Maga, G. How to win the
HIV-1 drug resistance hurdle race: running faster or jumping
higher? The Biochemical Journal. 2017, 474, 1559–1577.
(
15) Brai, A.; Fazi, R.; Tintori, C.; Zamperini, C.; Bugli, F.;
Sanguinetti, M., Stigliano, E.; Esté, J.; Badia, R.; Franco, S.; Martinez,
M. A.; Martinez, J. P.; Meyerhans, A.; Saladini, F., Zazzi, M.; Garbelli,
A.; Maga, G. Human DDX3 protein is a valuable target to develop
broad spectrum antiviral agents. Proceedings of the National
Academy of Sciences. 2016, 113, 5388–5393.
(31) Schrödinger Release 2014-3: Prime, version 3.7,
Schrödinger, LLC, New York, NY, 2014.
(16) Meier-Stephenson, V.; Mrozowich, T.; Pham, M.; Patel, T.
(32) Sengoku, T.; Nureki, O.; Nakamura, A.; Kobayashi, S.;
Yokoyama, S. Structural Basis for RNA Unwinding by the DEAD-Box
Protein Drosophila Vasa. Cell. 2006, 2, 287-300.
(33) Högbom, M.; Collins, R.; Van den Berg, S.; Jenvert, R.M.;
Karlberg, T.; Kotenyova, T.; Flores, A.; Karlsson Hedestam, G.B.;
Schiavone, L.H. Crystal Structure of Conserved Domains 1 and 2 of
the Human DEAD-box Helicase DDX3X in Complex with the
Mononucleotide AMP J Mol Biol. 2007, 1, 150-159.
(34) Schrödinger Release 2014-3: MacroModel, version 10.5,
Schrödinger, LLC, New York, NY, 2014
(35) Small-Molecule Drug Discovery Suite 2014-3: Glide, version
6.4, Schrödinger, LLC, New York, NY, 2014.
(36) G. Jones, P. Willett and R. C. Glen, Molecular recognition of
receptor sites using a genetic algorithm with a description of
desolvation J. Mol. Biol., 1995, 245, 43-53.
R. DEAD-box helicases: the Yin and Yang roles in viral infections.
Biotechnology and Genetic Engineering Reviews. 2018, 34, 3–32.
(17) Cordin, O.; Banroques, J.; Tanner, N. K.; Linder, P. The
DEAD-box protein family of RNA helicases. Gene. 2006, 367, 17-37.
(
18) Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics. CA:
A Cancer Journal for Clinicians. 2013, 63, 11–30.
19) Schütz, P.; Karlberg, T.; van den Berg, S., Collins, R.; Lehtiö,
(
L.; Högbom, M.; Holmberg-Schiavone, L.; Tempel, W.; Park, H. W.;
Hammarström, M.; Moche, M.; Thorsell, A. G.; Schüler, H.
Comparative structural analysis of human DEAD-Box RNA
helicases. PLoS ONE. 2010.
doi: 10.1371/journal.pone.0012791.
(20) Song, H.; Ji, X. The mechanism of RNA duplex recognition
and unwinding by DEAD-box helicase DDX3X. Nature
Communications. 2019.
1
2
ACS Paragon Plus Environment