W. Ha, Z. Shan / Tetrahedron: Asymmetry 17 (2006) 854–859
859
Z. X.; Xiong, Y.; Li, W. Z.; Zhao, D. J. Tetrahedron:
Asymmetry 1998, 9, 3985; (d) Shan, Z. X.; Xiong, Y.; Zhao,
D. J. Tetrahedron 1999, 55, 3893; (e) Periasamy, M.;
Venkatraman, L.; Sivakumar, S.; Sampathkumar, N.; Rama-
nathan, C. R. J. Org. Chem. 1999, 64, 7643; (f) Periasamy,
M.; Kumar, N. S.; Sivakumar, S.; Rao, V. D.; Ramanathan,
C. R.; Venkatraman, L. J. Org. Chem. 2001, 66, 3828; (g)
Shan, Z.-X.; Liu, S.-M.; Liu, D.-J. Chin. J. Chem. 2003, 21,
1373; (h) Liu, D. J.; Shan, Z. X.; Liu, F.; Xiao, C. G.; Lu, G.
J.; Qin, J. G. Helv. Chim. Acta 2003, 86, 157.
Convergence with unweighted and weighted agree-
ment factors was achieved at R = 0.0529 and Rw =
2
0.0907 (w = 1/[ns2(Fo ) + (0.0481P)2 + 0.0000P] where P =
2
2
(Fo + 2Fc )/3, S = 0.0140(14), and Fc* = kFc[1 + 0.001 ·
Fc nl3/sin(2nq)]ꢀ1/4). The maximum and minimum peaks
2
on the final diꢀff3erence Fourier map correspond to 0.224
˚
and ꢀ0.150 eA
.
Crystal data for a 1:1:1 complex of BDDNPAC, (S)-BI-
NOL, and water: empirical formula, C38H39ClN2O7; for-
mula weight, 671.16; calculated density, 1.284 g/cm3;
5. (a) Kazlauskas, R. J. J. Am. Chem. Soc. 1989, 111, 4953; (b)
Kazlauskas, R. J. Org. Synth. 1991, 70, 60; (c) Miyano, S.;
Kawahara, K.; Inone, Y.; Hashimoto, H. Chem. Lett. 1987,
355; (d) Fujjmoto, Y.; Iwadate, H.; Ikekawa, N. J. Chem.
Soc., Chem. Commun. 1985, 1333; (e) Wu, S. H.; Zhang, L.
Q.; Chen, C. S.; Girdaukas, G.; Sih, C. J. Tetrahedron Lett.
1985, 26, 4323.
6. (a) Miyano, S.; Tobita, M.; Nawa, M.; Sato, S.; Hashimoto,
J. J. Chem. Soc., Chem. Commun. 1980, 1223; (b) Miyano, S.;
Handa, S.; Shimizu, K.; Tagami, K.; Hashimoto, H. Bull.
Chem. Soc. Jpn. 1984, 57, 1943; (c) Brussee, J.; Groemendijk,
J. L. G.; te Kopple, J. M.; Janse, A. C. A. Tetrahedron 1985,
41, 3313; (d) Smricina, M.; Lorenc, M.; Hanus, V.; Sedomera,
P.; Kocovsky, P. J. Org. Chem. 1992, 57, 1917.
3
˚
volume (V), 1736.5(6) A ; crystal system, monoclinic; space
group, P2(1); Z = 2; unit cell dimensions, a = 12.547(3),
b = 10.265(2), c = 14.075(3), b = 106.98(3)ꢁ; absorption
coefficient (l), 0.162 mmꢀ1; index ranges 0 6 h 6 15,
ꢀ12 6 k 6 12, ꢀ17 6 l 6 16; F(000), 708; GOF, 1.031.
Acknowledgements
We thank the National Natural Science Foundation of
China 20372053 for financial support.
7. (a) Cai, D.; Hughes, L. D.; Verhoeven, T. R.; Reider, P. J.
Tetrahedron Lett. 1995, 36, 7991; (b) Tanaka, K.; Okada, T.;
Toda, F. Angew. Chem., Int. Ed. Engl. 1993, 32, 1147; (c)
Toda, F.; Tanaka, K.; Stein, Z.; Goldberg, I. J. Org. Chem.
1994, 59, 5748.
References
1. For reviews on enantiopure 1,10-bi-2-naphthols, see: (a)
Periasamy, M. Aldrichim. Acta 2002, 35, 89; (b) Huang,
Shiwen; Shan, Zixing; Zhao, Dejie Chem. Reagents (in
Chinese) 2000, 22, 207; (c) Putala, Martin Enantiomer 1999,
4, 243; (d) Pu, L. Chem. Rev. 1998, 98, 2405; (e) Zimmer, R.;
Suhrbier, J. J. Prak. Chem-Chem ZTG. 1997, 339, 758; (f)
Rosini, C.; Franzini, L.; Raffaelli, A.; Salvadori, P. Synthesis
1992, 503.
8. Wang, Y.; Sun, J.; Ding, K. L. Tetrahedron 2000, 56, 4447.
9. Toda, F.; Atanaka, K. J. Org. Chem. 1994, 59, 5748.
10. (a) Kwashima, M.; Hirayama, A. Chem. Lett. 1990, 19, 2299;
(b) Kwashima, M.; Hirata, R. Bull. Chem. Soc. Jpn. 1993, 66,
2002.
11. Toda, F.; Tanaka, K.; Mak Thomas, C. W. Chem. Lett. 1984,
12, 2085.
12. Toda, F.; Yoshizawa, K.; Hyoda, S.; Toyota, S.; Chatzief-
thimiou, S.; Mavridis, I. M. Org. Biomol. Chem. 2004, 2, 449.
13. (a) Toda, F.; Tanaka, K. J. Org. Chem. 1988, 53, 3607; (b)
Toda, F.; Tanaka, K.; Nassimbeni, L.; Niven, M. Chem. Lett.
1988, 1371.
14. (a) Shan, Zixing; Lu, Guojian J. Org. Chem. 2004, 69, 3593;
(b) Shan, Z. X.; Wan, B. Y.; Wang, G. P. Helv. Chim. Acta
2002, 85, 1062; (c) Shan, Zixing; Chen, Jianguo; Yang, Xi;
Zhao, Dejie Chem. Reagents (in Chinese) 1998, 20, 163; (d)
Lu. G. J. Thesis, Wuhan University, Wuhan, 2003.
15. (a) Shan, Z. X.; Wan, B. Y. CN 01114245, 2001; (b) Shan, Z.
X.; Wan, B. Y. CN 01106592, 2001.
2. For recent examples of the application of enantiopure 1,10-bi-
2-naphthols in asymmetric synthesis, see: (a) Manfred, T.;
Reetz, Jun-An Angew. Chem., Int. Ed. 2005, 44, 412–415; (b)
Shan, Z. X.; Wang, Q. Chin. J. Org. Chem. 2005, 25, 720; (c)
Qin, Y. C.; Liu, L.; Pu, L. Org. Lett. 2005, 7, 2381; (d) Liu, D.
J.; Shan, Z. X.; Zhou, Y.; Qin, J. G. Helv. Chim. Acta 2004,
87, 2310; (e) Liu, D. J.; Shan, Z. X.; Qin, J. G. Chin. J. Chem.
2004, 22, 1336; (f) Au-Yeung, T. T.-L.; Chan, S. S.; Chan, A.
S. C. Adv. Synth. Catal. 2003, 345, 537; (g) Matsunaga, S.;
Ohshima, T.; Shibasaki, M. Adv. Synth. Catal. 2002, 344, 3–
15; (h) Yamashita, Y.; Ueno, M.; Kuriyama, Y.; Kobayashi,
S. Adv. Synth. Catal. 2002, 344, 929–931; (i) Donnoli, M. I.;
Scafato, P.; Superchi, S.; Rosini, C. Chirality 2001, 13, 258–
265; (j) Kodama, H.; Ito, J.; Nagaki, A.; Ohta, T.; Furukawa,
I. Appl. Organomet. Chem. 2000, 14, 709–714.
3. Phosphorus chemistry method: (a) Kaba, E. P.; Gokel, G.
W.; de Jong, F.; Koga, K.; Sousa, L. R.; Siegel, M. G.;
Kaplan, L.; Sogah, G. D. Y.; Cram, D. J. J. Org. Chem. 1977,
47, 4173; (b) Xu, Z. L.; Huang, W. H.; We, L.; Xie, S. K.
Chin. J. Org. Chem. 1985, 5, 475; (c) Werner, W.; Tresselt, D.;
Ihn, W.; Ziehell, G. J. Prakl. Chem. 1987, 329, 1031; (d)
Jacques, J.; Fouquay, C. Org. Synth. 1988, 67, 1; (e)
Truesdale, L. K. Org. Synth. 1988, 67, 13; (f) Gong, B. Q.;
Chen, W. Y.; Hu, B. F. J. Org. Chem. 1991, 56, 423; (g)
Fabbri, D.; Delogu, G.; de Lucehi, O. J. Org. Chem. 1993, 58,
1748; (h) Brunel, J. M.; Buono, G. J. Org. Chem. 1993, 58,
7313; (i) Wang, M.; Hu, B. F. J. Org. Chem. 1995, 60, 7364.
4. Boron chemistry method: (a) Shan, Z. X.; Wang, G. P.;
Duan, B.; Zhao, D. J. Tetrahedron: Asymmetry 1996, 7, 2647;
(b) Shan, Z. X.; Cheng, F. Y.; Huang, S. W.; Zhao, D. J.;
Jing, Z. Z. Tetrahedron: Asymmetry 1997, 8, 1175; (c) Shan,
16. Sokolov, L. B.; Nichugovskaya, K. M.; Karpenko, M. P.
Khim. Farm. Zh+ 1978, 12, 45.
17. Enantiopure (R)- and (S)-BINOL are different from racemic
BINOL in crystalline behavior in benzene or toluene. In the
two solvents, enantiopure isomers are separated out as a
colorless, transparent, heavy crystal, and that racemic BINOL
is isolated as a white, lightweight needle. This crystalline
property has been successfully applied to the separation of the
enantiomer and the racemate in a non-racemic BINOL. In our
experiment, the water-containing acetonitrile solution
removed from the molecular complex crystal was evaporated
to dryness to furnish a solid mixture of (R)-BINOL and a
small amount of the dissolved molecular complex, BDDN-
PAC and racemic BINOL (for BINOL, it is either the
unchanged starting material or the result of racemization of
(R)-BINOL during heating). The solid mixture was worked up
with Et2O, (R)- and racemic BINOL entered into the solution.
When the ethereal solution was evaporated and the residue
was crystallized in toluene, enantiopure BINOL was efficiently
separated from the racemate.