Communication
ChemComm
glucose-to-fructose isomerisation encompasses solvent exchange
rather than an intramolecular hydride-shift for H-USY (6).
The work was funded by the Innovation Fund Denmark
(case number 5150-00023B). SM gratefully acknowledges
funding by Grant 2013_01_0709 of the Carlsberg Foundation.
SS thanks the Department of Biotechnology (Government of
India), New Delhi, India, for support. 800 MHz NMR spectra
were recorded on the spectrometer of the National Instrument
Center for NMR Spectroscopy of Biological Macromolecules at
the Technical University of Denmark. Prof. Mads Clausen is
acknowledged for helpful discussions.
Notes and references
1
2
3
4
Y. Rom ´a n-Leshkov, M. Moliner, J. A. Labinger and M. E. Davis,
Angew. Chem., Int. Ed., 2010, 49, 8954.
R. DiCosimo, J. McAuliffe, A. J. Poulose and G. Bohlmann, Chem.
Soc. Rev., 2013, 42, 6437.
E. Nikolla, Y. Roman-Leshkov, M. Moliner and M. E. Davis, ACS
Catal., 2011, 1, 408.
(a) J. B. Binder and R. T. Raines, J. Am. Chem. Soc., 2009, 131, 1979;
(b) S. G. Wettstein, D. M. Alonso, E. I. G u¨ rb u¨ z and J. A. Dumesic,
Curr. Opin. Chem. Eng., 2012, 1, 218; (c) M. Moliner, Y. Rom ´a n-
Leshkov and M. E. Davis, Proc. Natl. Acad. Sci. U. S. A., 2010,
Fig. 4 Stereoselectivity of hydride shift into the pro-R position using
H-USY (6). C1H1 signals of a-fructofuranosides are labelled by their
abundance (a). To a small extent (B4.6%), isomerisation encompasses
protonation of C1 from the solvent rather than through an intramolecular
1
07, 6164.
5
(a) Y. Roman-Leshkov, M. Moliner, J. A. Labinger and M. E. Davis,
Angew. Chem., Int. Ed., 2010, 49, 8954; (b) R. Bermejo-Deval,
R. S. Assary, E. Nikolla, M. Moliner, Y. Rom ´a n-Leshkov, S.-J.
Hwang, A. Palsdottir, D. Silverman, R. F. Lobo, L. A. Curtiss and
M. E. Davis, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 9727;
2
hydride shift. [1-pro-S- H] a-fructofuranoside reference signals are dis-
played with a single bold contour. (b) 3D plot of the spectral region shown
in (a) as contour plot.
(
c) S. Saravanamurugan, M. Paniagua, J. A. Melero and A. Riisager,
1
13
J. Am. Chem. Soc., 2013, 135, 5246; (d) S. Saravanamurugan and
A. Riisager, Catal. Sci. Technol., 2014, 4, 3186; (e) M. Paniagua,
S. Saravanamurugan, M. Melian-Rodriguez, J. A. Melero and
A. Riisager, ChemSusChem, 2015, 8, 1088; ( f ) V. Choudhary,
A. B. Pinar, R. F. Lobo, D. G. Vlachos and S. I. Sandler,
ChemSusChem, 2013, 6, 2369.
(a) L. M. Ren, Q. Guo, P. Kumar, M. Orazov, D. D. Xu, S. M. Alhassan,
K. A. Mkhoyan, M. E. Davis and M. Tsapatsis, Angew. Chem., Int. Ed.,
2015, 54, 10848; (b) S. Saravanamurugan, A. Riisager, E. Taarning
and S. Meier, ChemCatChem, 2016, 8, 3107.
at least 99% as estimated from H– C HSQC NMR spectra of
the substrate (see Fig. S5, ESI†). Nevertheless, fructose that only
is protonated at the C-1 position forms to almost 5% using
H-USY (6) in protonated methanol due to the incorporation of
hydrogen from the solvent, presumably through the formation
of an enol intermediate.
6
1
13
In conclusion, HÀ C HSQC NMR assays were applied to
detect the stereoselective hydride shift of the glucose hydrogen
H-2 into the pro-R position of fructose, both for solid Al-zeolites
H-USY (6) and (30)) and Sn-Beta zeolite as well as for dissolved
AlCl . The hydride shift into the pro-R position resembles
the stereochemistry of the xylose isomerase catalysed reaction,
and the stereochemical outcome results from the concerted
transition state involving hydride transfer from C2 to C1. Such
7
8
R. Bermejo-Deval, M. Orazov, R. Gounder, S.-J. Hwang and
M. E. Davis, ACS Catal., 2014, 4, 2288.
G. N. Li, E. A. Pidko and E. J. M. Hensen, Catal. Sci. Technol., 2014,
(
4
, 2241.
3
9 K. Bock, M. Meldal, B. Meyer and L. Wiebe, Acta Chem. Scand., Ser. B,
1983, 37, 101.
0 (a) M. Bøjstrup, B. O. Petersen, S. R. Beeren, O. Hindsgaul and
S. Meier, Anal. Chem., 2013, 85, 8802; (b) B. O. Petersen,
O. Hindsgaul and S. Meier, Analyst, 2014, 139, 401.
1
stereoselective catalysis by zeolites indicates a possible role 11 (a) E. J. Creyghton, S. D. Ganeshie, R. S. Downing and H. van
Bekkum, J. Mol. Catal. A: Chem., 1997, 115, 457; (b) J. Brus,
L. Kobera, W. Schoefberger, M. Urbanova, P. Klein, P. Sazama,
in enantioselective synthesis, not least of biomolecules. The
1
13
HÀ C HSQC NMR assays hinge on the distinction of carbo-
E. Tabor, S. Sklenak, A. V. Fishchuk and J. Dedecek, Angew. Chem.,
2015, 54, 541; (c) J. A. van Bokhoven, A. M. van der Eerden and
D. C. Koningsberger, J. Am. Chem. Soc., 2003, 125, 7435.
2 (a) K. N. Allen, A. Lavie, G. K. Farber, A. Glasfeld, G. A. Petsko and
D. Ringe, Biochemistry, 1994, 33, 1481; (b) A. Y. Kovalevsky,
L. Hanson, S. Z. Fisher, M. Mustyakimov, S. A. Mason, V. T.
Forsyth, M. P. Blakeley, D. A. Keen, T. Wagner, H. L. Carrell,
A. K. Katz, J. P. Glusker and P. Langan, Structure, 2010, 18, 688.
3 J. Q. Tang, X. W. Guo, L. F. Zhu and C. W. Hu, ACS Catal., 2015,
5, 5097.
hydrate isotopomers, thus permitting the direct quantification
of isotopomers and of their respective rates of formation.
1
1
1
13
HÀ C HSQC NMR both affords accurate determinations of
H D
kinetic isotope effects (k /k = 2.2 for H-USY (6)) and sufficient
resolution and sensitivity to determine the difference in activa-
tion energy between hydrogen transfer to the pro-R and pro-S
À1
positions (16.3 Æ 0.4 kJ mol ). To a minor degree (B4.6%),
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016