4
780 Macromolecules, Vol. 43, No. 10, 2010
Liu et al.
small (about 95 nm in size) and positively charged complexes
which are suitable for gene delivery. Further modification of the
block copolymers and related bioresearch are in progress in our
laboratory now. We expect that the polymer would provide
potential applications in gene therapy.
Acknowledgment. The authors are thankful for the financial
support from the National Natural Science Foundation of China
(
(
20974074), the Natural Science Foundation of Jiangsu Province
BK2008157), Qing Lan Project for Innovation Team of Jiangsu
Province, and the Program of Innovative Research Team of
Soochow University. The authors are indebted to Mr. Weizhong
Chen, from University of Science and Technology of China, for
his valuable help in LLS experiments and discussion. J.H. has
received the financial support from the Innovation Project of
Graduate Students of Jiangsu Province, China.
Figure 17. Zeta-potential of PEEP32-b-PDMAEMA67/pDNA complex
at various N/P ratios.
of the morphology of the PEEP -b-PDMAEMA /pDNA
3
References and Notes
2
67
complexes will help us to understand the complex properties
and the condensation process. Figure 16 shows the transmis-
sion electron microscopy of the naked plasmid DNA and
the PEEP -b-PDMAEMA /pDNA complexes, which were
(
(
1) C o€ lfen, H. Macromol. Rapid Commun. 2001, 22, 219–252.
2) B u€ t u€ n, V.; Liu, S.; Weaver, J. V. M.; Bories-Azeau, X.; Cai, Y.;
Armes, S. P. React. Funct. Polym. 2006, 66, 157–165.
(3) Karanikolopoulos, N.; Pitsikalis, M.; Hadjichristidis, N.
Georgikopoulou, K.; Calogeropoulou, T.; Dunlap, J. R. Langmuir
3
2
67
prepared in PBS buffer at pH 7.4 at various N/P ratios. The
images obtained clearly demonstrate significant morpho-
logical differences as the N/P ratios were varied. Small and
less uniform complexes were formed at lower N/P (1 and 2)
with the coexistence of free pDNA molecules that are not
engaged in the interaction. Spherical, discrete complexes
were achieved at N/P = 3 (mean diameter ∼ 95 nm).
2007, 23, 4214–4224.
4) Moore, N. M.; Sheppard, C. L.; Sakiyama-Elbert, S. E. Acta
(
(
Biomater. 2009, 5, 854–64.
ꢁ
5) Uchman, M.; Proch ꢀa zka, K.; St ꢁe p ꢀa nek, M.; Mountrichas, G.;
ꢁ
Pispas, S.; Spı
´
rkov ꢀa , M.; Walther, A. Langmuir 2008, 24, 12017–
12025.
(6) Antonietti, M.; Breulmann, M.; G o€ ltner, C. G.; C o€ lfen, H.; Wong,
K. K. W.; Walsh, D.; Mann, S. Chem.;Eur. J. 1998, 4, 2493–2500.
Zeta-potential is an indicator of surface charges on the
polymer/DNA complexes. A positively charged surface allows
electrostatic interaction with anionic cell surfaces and facili-
(
(
7) C o€ lfen, H.; Antonietti, M. Langmuir 1998, 14, 582–589.
8) Guillemet, B.; Faatz, M.; Gr o€ hn, F.; Wegner, G.; Gnanou, Y.
Langmuir 2006, 22, 1875–1879.
(9) Li, Y.; Gong, Y. K.; Nakashima, K.; Murata, Y. Langmuir 2002,
18, 6727–6729.
4
8
tates cellular uptake. The zeta-potential analysis of the PEEP -
b-PDMAEMA /pDNA complexes were conducted by de-
32
6
7
termining the electrophoretic mobility at 25 ꢀC. Figure 17
showed the zeta-potential changes with various N/P ratios of
PEEP-b-PDMAEMA/pDNA complexes ranging from 1/2
to 18/1. Naked DNA molecules possessed a negative zeta-
potential of -25 mV. The zeta-potential of the resulting com-
plex changed from a negative charge to a positive charge
when the amount of PEEP -b-PDMAEMA was increased.
When the N/P ratio was higher than 3/1, the surface of pDNA
was fully occupied with the PEEP-b-PDMAEMA molecules
to form positive charge complexes. These results were consis-
tent with the gel retardation electrophoresis data. The PEEP-
b-PDMAEMA/pDNA complexes carry extra positive charges
on their surfaces, which in turn allow better interaction with
target cell membrane and therefore an enhanced uptake. From
these results, we can conclude that the PEEP-b-PDMAEMA
diblock copolymer can effectively condense DNA and be
used as gene carrier.
(10) Qin, S.; Geng, Y.; Discher, D. E.; Yang, S. Adv. Mater. 2006, 18,
2
905–2909.
(
11) Loizou, E.; Triftaridou, A. I.; Georgiou, T. K.; Vamvakaki, M.;
Patrickios, C. S. Biomacromolecules 2003, 4, 1150–1160.
12) Vihola, H.; Laukkanen, A.; Valtola, L.; Tenhu, H.; Hirvonen, J.
Biomaterials 2005, 26, 3055–3064.
(
(13) Lin, S.; Du, F.; Wang, Y.; Ji, S.; Liang, D.; Yu, L.; Li, Z.
Biomacromolecules 2008, 9, 109–115.
14) Wang, J.; Gao, S. J.; Zhang, P. C.; Wang, S.; Mao, M. Q.; Leong,
32
67
(
(
(
K. W. Gene Ther. 2004, 11, 1001–1010.
15) Xiong, M. H.; Wu, J.; Wang, Y. C.; Li, L. S.; Liu, X. B.; Zhang,
G. Z.; Yan, L. F.; Wang, J. Macromolecules 2009, 42, 893–896.
16) Chaubal, M. V.; Sen Gupta, A.; Lopina, S. T.; Bruley, D. F. Crit.
Rev. Ther. Drug Carrier Syst. 2003, 20, 295–315.
(17) Wang, J.; Zhang, P. C.; Mao, H. Q.; Leong, K. W. Gene Ther. 2002,
, 1254–1261.
9
(
18) (a) Zhao, Z.; Wang, J.; Mao, H. Q.; Leong, K. W. Adv. Drug
Delivery Rev. 2003, 55, 483–499. (b) Huang, S. W.; Wang, J.; Zhang,
P. C.; Mao, H. Q.; Zhuo, R. X.; Leong, K. W. Biomacromolecules 2004,
5, 306–311. (c) Lu, Z. Z.; Wu, J.; Sun, T. M.; Ji, J.; Yan, L. F.; Wang, J.
Biomaterials 2008, 29, 733–741. (d) Iwasaki, Y.; Akiyoshi, K. Bio-
macromolecules 2006, 7, 1433–1438.
19) Xu, X.; Yu, H.; Gao, S.; Mao, H. Q.; Leong, K. W.; Wang, S.
Biomaterials 2002, 23, 3765–3772.
(20) Li, Q.; Wang, J.; Shahani, S.; Sun, D. D. N.; Sharma, B.; Elisseeff,
Conclusions
(
In summary, we have utilized the combination of ring-opening
polymerization (ROP) and ATRP to synthesize a series of well-
defined double-hydrophilic diblock copolymers containing
polyphosphoester block and PDMAEMA block. These PEEP-
b-PDMAEMA diblock copolymers show obvious pH- and tem-
perature-responsive behavior, so they can self-assemble into nano-
particles with different sizes and morphologies when the pH values
of aqueous solution were adjusted in the range of 3.0-10. The
LCSTs of the diblock copolymers depend on the degrees of
polymerization of each block. With the decrease of PDMAEMA
units, the increasing LCST can be observed. Besides, PEEP-
b-PDMAEMA diblock copolymers showed excellent DNA bind-
ing characteristics. The PEEP-b-PDMAEMA diblock copolymer
can effectively condense pDNA at N/P ratio = 3, resulting in
J. H.; Leong, K. W. Biomaterials 2006, 27, 1027–1034.
(
(
(
21) Wen, J.; Kim, G. J. A.; Leong, K. W. J. Controlled Release 2003, 92,
9–48.
22) Yang, X. Z.; Wang, Y. C.; Tang, L. Y.; Xia, H.; Wang, J. J. Polym.
3
Sci., Part A: Polym. Chem. 2008, 46, 6425–6434.
23) (a) Chen, D. P.; Wang, J. Macromolecules 2006, 39, 473–475.
(b) Wang, Y. C.; Tang, L. Y.; Sun, T. M.; Li, C. H.; Xiong, M. H.;
Wang, J. Biomacromolecules 2008, 9, 388–395. (c) Wang, Y. C.; Liu,
X. Q.; Sun, T. M.; Xiong, M. H.; Wang, J. J. Controlled Release 2008,
1
2
28, 32–40. (d) Cheng, J.; Ding, J. X.; Wang, Y. C.; Wang, J. Polymer
008, 49, 4784–4790. (e) Yuan, Y. Y.; Wang, Y. C.; Du, J. Z.; Wang, J.
Macromolecules 2008, 41, 8620–8625.
24) Iwasaki, Y.; Wachiralarpphaithoon, C.; Akiyoshi, K. Macromole-
(
cules 2007, 40, 8136–8138.