Angewandte Chemie International Edition
10.1002/anie.201803013
COMMUNICATION
model compounds BAz-M1 and BAz-M2 also increased. These
results indicate that the extension of π-conjugation contributed to
improving photostability. Considering the fact that P-BAz showed
more efficient emission property than BAz-H, it was reasonable
that the bending was restricted by extension of π-conjugation and
increasing the rigidity of the polymer main chain.
In conclusion, fused azobenzene–boron complexes and their
copolymers were successfully synthesized. By the B–N
0 1
coordination, the forbidden S –S transition in BAz-H was
transformed to the permitted transition. It was suggested that
elongation of the N=N double bond occurred by photoexcitation,
resulting in distortion of molecular frameworks. Based on this
structural relaxation in the excited state, AIE behaviors were
obtained. Owing to the strong electron-accepting ability of BAzs
and extension of the π-conjugation by copolymerizaition, the D–
A type copolymer P-BAz exhibited highly-efficient NIR emission
in both of the solution and the film states. The extension of the π-
M. G. Rabbani, A. K. Sekizkardes, T. İslamoğlu, H. M. El-Kaderi, Chem.
Mater. 2014, 26, 1385-1392; (f) H. T. Nguyen, O. Coulembier, K.
Gheysen, J. C. Martins, P. Dubois, Macromolecules 2012, 45, 9547-
9550; g) S. Meena, F. Alam, V. Dutta, J. Jacob, Polym. Int. 2017, 66,
593-603; h) A. Izumi, M. Teraguchi, R. Nomura, T. Masuda,
Macromolecules 2000, 33, 5347-5352; i) A. Izumi, M. Teraguchi, R.
Nomura, T. Masuda, J. Polym. Sci. A Polym. Chem. 2000, 38, 1057-
1063; j) A. Izumi, R. Nomura, T. Masuda, Macromolecules 2001, 34,
4342-4347; k) T. Yamamoto, S.-B. Kim, T. Maruyama, Chem. Lett. 1996,
25, 413-414.
1
0.
1.
a) T. Fujino, S. Y. Arzhantsev, T. Tahara, J. Phys. Chem. A 2001, 105,
8123-8129; b) H. M. D. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012,
41, 1809-1825; c) A. Cembran, F. Bernardi, M. Garavelli, L. Gagliardi, G.
Orlandi, J. Am. Chem. Soc. 2004, 126, 3234-3243.
1
H. Rau, Angew. Chem. 1973, 85, 248-258; Angew. Chem. Int. Ed. Engl.
1973, 12, 224-235.
12.
a) J. Yoshino, A. Furuta, T. Kambe, H. Itoi, N. Kano, T. Kawashima, Y.
Ito, M. Asashima, Chem.–Eur. J. 2010, 16, 5026-5035; b) J. Yoshino, N.
Kano, T. Kawashima, Chem. Lett. 2008, 37, 960-961; c) J. Yoshino, N.
Kano, T. Kawashima, Chem. Commun. 2007, 559-561. d) J. Yoshino, N.
Kano, T. Kawashima, Dalton Trans. 2013, 42, 15826-15834.
r
conjugation effectively increased k and decreased knr both of
which were essential for obtaining good PL performances. In
addition, P-BAz had higher photostability than the other
azobenzene derivatives. Those unique and useful properties
were attributed to the N=N double bond including fused structure
with B–N coordination. This concept shuold be applicable for
fabricating advanced optically-functional materials utilizing the
heteroatom-coordinated azobenzene as a key element-block.
1
3.
4.
Y. Wang, J. Ma, Y. Jiang, J. Phys. Chem. A 2005, 109, 7197-7206.
A. Wakamiya, T. Taniguchi, S. Yamaguchi, Angew. Chem. 2006, 118,
1
3242-3245; Angew. Chem. Int. Ed. 2006, 45, 3170-3173.
15.
E. Hohaus, K. Z. Wessendorf, Naturforsch. B: Anorg. Chem., Org. Chem.
1980, 35, 319-325.
16.
a) M. Kosugi, K. Sasazawa, Y. Shimizu, T. Migita, Chem. Lett. 1977, 6,
301-302; b) D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636-
3
638.
S. Ohtani, M. Gon, K. Tanaka, Y. Chujo, Chem.–Eur. J. 2017, 23, 11827-
1833.
H. Höpfl, M. Sánchez, N. Farfán, V. Barba, Can. J. Chem. 1998, 76,
352-1360.
1
7.
8.
1
Acknowledgements
1
1
This work was partially supported by the Mitsubishi Foundation
19.
J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X.
Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740-1741.
F. Bu, R. Duan, Y. Xie, Y. Yi, Q. Peng, R. Hu, A. Qin, Z. Zhao, B. Z. Tang,
Angew. Chem. 2015, 127, 14700-14705; Angew. Chem. Int. Ed. 2015,
(
for K.T.), the Kyoto Technoscience Center and Technology
2
0.
1.
Foundation (for M.G.), a Grant-in-Aid for Research Activity Start-
up (for M.G.) (JSPS KAKENHI Grant numbers 16H06888) and a
Grant-in-Aid for Scientific Research on Innovative Areas “New
Polymeric Materials Based on Element-Blocks (No.2401)” (JSPS
KAKENHI Grant Number P24102013).
54, 14492-14497.
2
J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem.
Rev. 2015, 115, 11718-11940.
22.
a) G. M. Fischer, A. P. Ehlers, A. Zumbusch, E. Daltrozzo, Angew. Chem.
2
007, 119, 3824-3827; Angew. Chem. Int. Ed. 2007, 46, 3750-3753; b)
U. Mayerhöffer, B. Fimmel, F. Würthner, Angew. Chem. 2012, 124, 168-
71; Angew. Chem. Int. Ed. 2012, 51, 164-167; c) C. Li, R. Duan, B.
Liang, G. Han, S. Wang, K. Ye, Y. Liu, Y. Yi, Y. Wang, Angew. Chem.
017, 129, 11683-11687; Angew. Chem. Int. Ed. 2017, 56, 11525-11529;
Keywords: boron • conjugated polymer • near-infrared •
luminescence • azobenzene
1
2
1
.
Organic Light Emitting Devices: Synthesis, Properties and Application;
Eds.: K. Müellen, U. Scherf), Wiley-VCH, Weinheim, 2006.
d) G. M. Fischer, M. Isomäki-Krondahl, I. Göttker-Schnetmann, E.
Daltrozzo, A. Zumbusch, Chem.–Eur. J. 2009, 15, 4857-4864; e) Z.
Zhang, R. M. Edkins, J. Nitsch, K. Fucke, A. Eichhorn, A. Steffen, Y.
Wang, T. B. Marder, Chem.–Eur. J. 2015, 21, 177-190; f) M. Grzybowski,
M. Taki, S. Yamaguchi, Chem.–Eur. J. 2017, 23, 13028-13032; g) S.
Tang, P. Murto, X. Xu, C. Larsen, E. Wang, L. Edman, Chem. Mater.
2017, 29, 7750-7759; h) L. Ren, F. Liu, X. Shen, C. Zhang, Y. Yi, X. Zhu,
J. Am. Chem. Soc. 2015, 137, 11294-11302; i) M. Satou, T. Nakamura,
Y. Aramaki, S. Okazaki, M. Murata, A. Wakamiya, Y. Murata, Chem. Lett.
2016, 45, 892-894; j) Z. Lei, X. Li, X. Luo, H. He, J. Zheng, X. Qian, Y.
Yang, Angew. Chem. 2017, 129, 3025-3029; Angew. Chem. Int. Ed.
2017, 56, 2979-2983.
(
2.
3.
4.
Y. Chujo, K. Tanaka, Bull. Chem. Soc. Jpn. 2015, 88, 633-643.
D. Kim, H. Cho, C. Kim, Prog. Polym. Sci. 2000, 25, 1089-1139.
J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay,
R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539-541.
R. C. Smith, J. D. Protasiewicz, J. Am. Chem. Soc. 2004, 126, 2268-
5.
6.
7.
8.
2269.
L. Li, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, J. Am.
Chem. Soc. 2015, 137, 15026-15035.
N. Burford, J. A. C. Clyburne, M. S. W. Chan, Inorg. Chem. 1997, 36,
3204-3206.
a) P. Weis, S. Wu, Macromol. Rapid Commun. 2017, 1700220; b) A.
Chevalier, P.-Y. Renard, A. Romieu, Chem.–Asian J. 2017, 12, 2008-
23.
a) R. Yang, R. Tian, J. Yan, Y. Zhang, J. Yang, Q. Hou, W. Yang, C.
Zhang, Y. Cao, Macromolecules 2005, 38, 244-253; b) H.-Y. Liu, P.-J.
Wu, S.-Y. Kuo, C.-P. Chen, E.-H. Chang, C.-Y. Wu, Y.-H. Chan, J. Am.
Chem. Soc. 2015, 137, 10420-10429; c) X. Li, W. Zeng, Y. Zhang, Q.
Hou, W. Yang, Y. Cao, Eur. Polym. J. 2005, 41, 2923-2933; d) R. Yoshii,
A. Nagai, K. Tanaka, Y. Chujo, J. Polym. Sci. A Polym. Chem. 2013, 51,
1726-1733; e) X. Gao, Y. Zhang, C. Fang, X. Cai, B. Hu, G. Tu, Org.
Electron. 2017, 46, 276-282.
2
028.
a) D. Shen, Z. Pan, H. Xu, S. Cheng, X. Zhu, L. Fan, Chin. J. Chem. 2010,
8, 1279-1283; b) W. Zhang, K. Yoshida, M. Fujiki, X. Zhu,
9.
2
Macromolecules 2011, 44, 5105-5111; c) D. H. Apaydin, H. Akpinar, M.
Sendur, L. Toppare, J. Electroanal. Chem. 2012, 665, 52-57; d) Z. Yan,
B. Sun, C. Guo, Y. Li, J. Mater. Chem. C 2014, 2, 7096-7103; e) P. Arab,
This article is protected by copyright. All rights reserved.