10.1002/chem.201903055
Chemistry - A European Journal
COMMUNICATION
poorly understood light-promoted processes involving the use of
inorganic bases can also result from overlooked anion-π
interactions.
product was purified by silica gel column chromatography (Petroleum
ether/EtOAc 9:1 to 4:1).
Acknowledgements
Experimental Section
This work was funded by MINECO (grant CTQ2015-69136-R,
MINECO/FEDER) and the CERCA Programme/Generalitat de
Catalunya. We also thank the Severo Ochoa Excellence
Accredita-tion 2014-2018 (SEV-2013-0319). L.B. acknowledges
the COFUND-Marie Curie action of the European Union’s FP7
(Ref. 291787 - ICIQ-IPMP) for a postdoctoral fellowship.
The corresponding aryloxyamide 1 (0.2 mmol) was mixed in a 10 mL vial
with K2CO3 (0.4 mmol, 55 mg) and an aromatic compound 2 (if solid) (0.4
mmol). Then the vial was sealed and three cycles of vacuum-refill with Ar
were performed. After adding ACN (2.0 mL) and degassing with a flow of
argon during 10 minutes, the aromatic compound 2 (0.4 mmol) was added
with a syringe (when liquid) and the mixture was stirred under blue LEDs
(4.5 W) irradiation overnight. Afterward, it was washed with water (5.0 mL),
extracted with EtOAc (3x4.0 mL) and dried over MgSO4. The reaction
mixture was then filtered and concentrated under vacuum. The desired
Keywords: non-covalent interactions • anion-π complex •
photocatalysis • amidyl radical
[1]
[2]
a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113,
5322–5363; b) M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem.
2016, 81, 6898−6926.
125, 10124 –10127 Angew. Chem. Int. Ed. 2013, 52, 9940–9943; b) J.-
Z. Liao, H.-L. Zhang, S.-S. Wang, J.-P. Yong, X.-Y. Wu, R. Yu, C.-Z. Lu,
Inorg. Chem. 2015, 54, 4345−4350; c) Y. Zhao, S. Benz, N. Sakai, S.
Matile, Chem. Sci. 2015, 6, 6219–6223; d) X. Zhang, X. Hao, L. Liu, A.-
T. Pham, J. Lopez-Andarias, A. Frontera, N. Sakai, S. Matile, J. Am.
Chem. Soc. 2018, 140, 17867−17871; e) J. López-Andarias, A. Bauz, N.
Sakai, A. Frontera, S. Matile, Angew. Chem. 2018, 130, 11049–11053;
Angew. Chem. Int. Ed. 2018, 57, 10883–10887.
a) D. A. Nicewicz, T. M. Nguyen, ACS Catal. 2014, 4, 355−360; b) N. A.
Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075−10166; c) S. P.
Pitre, C. D. McTiernan, J. C. Scaiano, ACS Omega 2016, 1, 66−76; d) V.
Srivastavaa, P. P. Singh, RSC Adv. 2017, 7, 31377−31392.
a) H. Kisch, Angew. Chem. 2013, 125, 842 – 879; Angew. Chem. Int. Ed.
2013, 52, 812–847; b) H. Kisch, Acc. Chem. Res. 2017, 50, 1002−1010.
C. G. S. Lima, T. De M. Lima, M. Duarte, I. D. Jurberg, M. W. Paixão,
ACS Catal. 2016, 6, 1389−1407.
[3]
[4]
[5]
[16] Y. Zhao, Y. Cotelle, L. Liu, J. López-Andarias, A.-B. Bornhof, M.
Akamatsu, N. Sakai, S. Matile, Acc. Chem. Res. 2018, 51, 2255−2263
[17] For some reviews on the topic, see: a) J. R. Chen, X.-Q. Hu, L.-Q. Lu,
W.-J. Xiao, Chem. Soc. Rev. 2016, 45, 2044−2056; b) M. D. Kärkäs, ACS
Catal. 2017, 7, 4999−5022.
For a few examples, see: a) E. Arceo, I. D. Jurberg, A. Álvarez-
Fernández, P. Melchiorre, Nature Chem. 2013, 5, 750–756; b) M. Nap-
pi, G. Bergonzini, P. Melchiorre, Angew. Chem. 2014, 126, 5021 –5025;
Angew. Chem. Int. Ed. 2014, 53, 4921–4925; c) E. Arceo, A. Bahamonde,
G. Bergonzini, P. Melchiorre, Chem. Sci. 2014, 5, 2438–2442; d) L.
Woźniak, J. J. Murphy, P. Melchiorre, J. Am. Chem. Soc. 2015, 137,
5678−5681; e) M. Silvi, E. Arceo, I. D. Jurberg, C. Cassani, P. Melchiorre,
J. Am. Chem. Soc. 2015, 137, 6120−6123.
[18] a) J. Davies, S. G. Booth, S. Essafi, R. W. A. Dryfe, D. Leonori, Angew.
Chem. 2015, 127, 14223–14227; Angew. Chem., Int. Ed. 2015, 54,
14017–14021; b) J. Davies, T. D. Svejstrup, D. F. Reina, N. S. Sheikh,
D. Leonori, J. Am. Chem. Soc. 2016, 138, 8092−8095; c) T. D. Svejstrup,
A. Ruffoni, F. Julià, V. M. Aubert, D. Leonori, Angew. Chem. 2017, 129,
15144–15148; Angew. Chem. Int. Ed. 2017, 56, 14948–14952; d) S. P.
Morcillo, E. M. Dauncey, J. H. Kim, J. J. Douglas, N. S. Sheikh, D.
Leonori, Angew. Chem. 2018, 130, 13127–13131; Angew. Chem. Int. Ed.
2018, 57, 744–748.
[6]
[7]
A. J. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste, Nature, 2017, 543,
637–646.
Y. Li, F. Ma, P. Li, T. Miao, L: Wang, Adv. Synth. Cat.. 2019, 361, 1606-
1616
[19] For a review, see: J. Davies, S. P. Morcillo, J. J. Douglas, D. Leonori,
Chem. -Eur. J. 2018, 24, 12154–12163.
[8]
[9]
K. Liang, N. Li, Y. Zhang, T. Li, C. Xia, Chem. Sci. 2019, 10, 3049-3053
a) C. Garau, A. Frontera, D. Quiñonero, P. Ballester, A. Costa, P. M. J.
Deyà, Phys. Chem. A 2004, 108, 9423–9427; b) B. L. Schottel, H. T.
Chifotides, K. R. Dunbar, Chem. Soc. Rev. 2008, 37, 68–83; c) A.
Frontera, P. Gamez, M. Mascal, T. J. Mooibroek, J. Reedijk, Angew.
Chem. 2011, 123, 9736–9756; Angew. Chem. Int. Ed. 2011, 50, 9564–
9583.
[20] D. Fernandez Reina, E. M. Dauncey, S. P. Morcillo, T. D. Svejstrup, M.
V. Popescu, J. J. Douglas, N. S. Sheikh, D. Leonori, Eur. J. Org. Chem.
2017, 2108–2111.
[21] a) C. J. Zheng, C. J. Kim, K. S. Bae, Y. H. Kim, W. G. Kim, J. Nat. Prod.
2006, 69, 1816–1819; b) M. Varoglu, T. H. Corbett, F. A. Valeriote, P.
Crew, J. Org. Chem. 1997, 62, 7078–7079.
[10] C. Garau, D. Quiñonero, A. Frontera, P. Ballester, A. Costa, P. M. Deyà,
New J. Chem. 2003, 27, 211–214.
[22] a) K. Wu, Y. Du, T. Wang, Org. Lett. 2017, 19, 5669–5672; b) K. Wu, Y.
Du, Z. Wei, T. Wang, Chem. Commun. 2018, 54, 7443–7446
[23] The quantum yield could not be measured because of the heteroge-neity
of the system.
[11] D. Quiñonero, C. Garau, A. Frontera, P. Ballester, A. Costa, P. M. Deyà
Chem. Phys. Lett. 2002, 359, 486–492.
[12] a) D. Quiñonero, C. Garau, C. Rotger, A. Frontera, P. Ballester, A. Costa,
P. M. Deyà, Angew. Chem. 2002, 114, 3539–3542; Angew. Chem. Int.
Ed. 2002, 41, 3389–3392; b) C. S. Anstöter, J. P. Rogers, J. R. R. Verlet,
J. Am. Chem. Soc. 2019, 141, 6132−6135.
[24] This possibility could be realistic, as the oxidation potential of B is 2.1 V,
as reported in: P. C. Mandal, D. Bardhan, S. Sarkar, S. N. Bhattacharyya,
J. Chem. Soc., Dalton Trans.: Inorg. Chem. 1991, 6, 1457–1461.
[25] C.-T. Yang, Y. Fu, Y. B. Huang, J. Yi, Q. X. Guo, L. Liu, Angew. Chem.
2009, 121, 7534 –7537; Angew. Chem. Int. Ed. 2009, 48, 7398–7401.
[26] The influence of the countercation in the calculations was not con-
sidered because it was assumed that in acetonitrile solvent-separated
ion-pairs are present. The large differences between interaction energies
in the gas phase and in acetonitrile arise from the fact that in the gas
phase the energy needed to desolvate the anion is not taken into
consideration.
[13] a) C. Garau, D. Quiñonero, A. Frontera, P. Ballester, A. Costa, P. M.
Deya, J. Phys. Chem. A 2005, 109, 9341-9345; b) P. Gamez, T. J.
Mooibroek, S. J. Teat, J. Reedijk, Chem. Res. 2007, 40, 435–444.
[14] C. Estarellas, A. Frontera, D. Quiñonero, P. M. Deyà, Angew. Chem.
2011, 123, 435–438; Angew. Chem. Int. Ed. 2011, 50, 415–418.
[15] For a few examples, see: a) Y. Zhao, Y. Domoto, E. Orentas, E.; C.
Beuchat, D. Emery, J. Mareda, N. Sakai, S. Matile, Angew. Chem. 2013,
This article is protected by copyright. All rights reserved.