152
S.H. El-Khalafy, M. Hassanein / Journal of Molecular Catalysis A: Chemical 363–364 (2012) 148–152
[5] T.M. Simándi, L.I. Simándi, M. Györ, A. Rockenbauer, A. Gömöry, Dalton Trans.
(2004) 1056.
3
2
1
0
[6] I.Cs. Szigyártó, T.M. Simándi, L.I. Simándi, L. Korecz, N. Nagy, J. Mol. Catal. A:
Chem. 251 (2006) 270.
[7] J. Kaizer, G. Baráth, R. Csonka, G. Speier, L. Korecz, A. Rockenbauer, L. Párkányi,
J. Inorg. Biochem. 102 (2008) 773.
[8] L.I. Simándi, S. Németh, N. Rumelis, J. Mol. Catal. 42 (1987) 357.
[9] F. Benedini, G. Galliani, M. Nali, B. Rindone, S. Tollari, J. Chem. Soc., Perkin Trans.
II (1963) 1985.
[10] K. Maruyama, T. Moriguchi, T. Mashino, A. Nishinaga, Chem. Lett. (1996)
819.
[11] L.I. Simándi, T.M. Barna, L. Korecz, A. Rockenbauer, Tetrahedron Lett. 34 (1993)
717.
[12] Z. Szeverényi, E.R. Milaeva, L.I. Simándi, J. Mol. Catal. 67 (1991) 251.
[13] M. Hassanein, M. Abdo, S. Gerges, S. El-Khalafy, J. Mol. Catal. A: Chem. 287
(2008) 52.
[14] J. Kaizer, R. Csonka, G. Speier, J. Mol. Catal. A: Chem. 180 (2002) 91.
[15] A.B. Zaki, M.Y. El-Sheikh, J. Evans, S.A. El-Safty, Polyhedron 19 (2000) 1317.
[16] S.A. El-Safty, J. Evans, M.Y. El-Sheikh, A.B. Zaki, Colloid Surf. A: Physicochem.
Eng. Aspects 203 (2002) 217.
[17] M.R. Maurya, S. Silkarwar, T. Joseph, S.B. Halligudi, J. Mol. Catal. A: Chem. 236
(2005) 132.
[18] M. Homma, A.F. Graham, Biochim. Biophys. Acta 61 (1962) 642.
[19] E. Frei, Cancer Chemother. Rep. 58 (1974) 49.
[20] U. Hollstein, Chem. Rev. 74 (1974) 625.
[21] J.T. Groves, T.E. Nemo, R.S. Myers, J. Am. Chem. Soc. 101 (1979) 1032.
[22] B. Meunier, Chem. Rev. 92 (1992) 1411.
[23] D. Mansuy, P. Battioni, J.P. Battioni, Eur. J. Biochem. 184 (1989) 267.
[24] D. Mansuy, Pure Appl. Chem. 59 (1987) 759.
[25] J.R. Lindsay Smith, in: R.A. Sheldon (Ed.), Metalloporphyrins in Catalysis Oxi-
dation, Marcel Deckker, New York, 1994 (Chapter 11).
[26] D. Mansuy, Coord. Chem. Rev. 125 (1993) 129.
[27] B.A. Arndtsen, R.G. Bergamm, T.A. Mobley, T.H. Petreson, Acc. Chem. Res. 28
(1995) 154.
a : at 0 min
b : after 26 min
c : after 44 min
d : after 54 min
e : after 60 min
f : after 120 min
g : after 150 min
h : after 270 min
h
g
f
e
a
d
c
b
300
400
500
600
Wavelength (nm)
Fig. 7. UV–vis absorption spectra after mixing of Mn(TPPS) (8.5 × 10−6 M), 2-
aminophenol (8.5 × 10−3 M), borax buffer (pH adjusted to 8) and H2O2 (0.08 M).
and manganese(III)tetra(N-methyl-2-pyridyl)porphyrin [36]. The
oxomanganese(IV)TPPS species reacts with OAP by abstracting H-
atom forming the 2-aminophenoxyl radical as shown in Scheme 4
[36]. The 2-aminophenoxyl radical then disproportionate leading
to the key intermediate o-benzoquinone monoimine and its further
conversion into the product APX.
[28] K.A. Jorgensen, Chem. Rev. 89 (1989) 431.
[29] B. Meunier, in: R.A. Sheldon (Ed.), Metalloporphyrins in Catalysis Oxidation,
Marcel Dekker, New York, 1994, p. 133 (Chapter 5).
[30] M. Hassanein, S. Gerges, M. Abdo, S. El-Khalafy, J. Mol. Catal. A: Chem. 240
(2005) 22.
[31] X.Y. Wang, R.J. Moterkaitis, A.E. Martell, Inorg. Chem. 23 (1984) 271.
[32] M. Forstin-Rio, D. Pujot, C. Bied-Charreton, M. Perree-Fauvet, A. Gaudemer, J.
Chem. Soc., Perkin Trans. 1 (1984) 1971.
[33] B. De Vismes, F. Bedioui, J. Devynck, C. Bied-Charreton, M. Perree-Fauvet, Nou-
veau J. Chem. 10 (1986) 81.
4. Conclusions
[34] E. Tarnaud, M. Forstin-Rio, C. Bied-Charreton, J. Mol. Catal. 72 (1992) 181.
[35] N. Colclough, J.R. Lindsay Smith, J. Chem. Soc., Perkin Trans. 2 (1994) 1139.
[36] N.W.J. Kamp, J.R. Lindsay Smith, J. Mol. Catal. A: Chem. 113 (1996) 131.
[37] H. Saleem, L.S. Kerry, Appl. Biol. Chem. Biotechnol. 845 (1997) 63.
[38] M. Fukushima, K. Tatsumi, J. Mol. Catal. A: Chem. 245 (2006) 178.
[39] H. Zeng, Q. Jian, Y. Zhu, X. Yan, X. Liang, H. Hu, Q. Liu, W. Lin, C.J. Guo, Porphyrins
Phthalocyanines 10 (2006) 96.
[40] C.W. Carter, Biochem. J. 22 (1928) 575.
[41] R. Gerdes, O. Bartels, G. Schneider, D. Worhle, G. Schulz-Ekloff, Int. J. Photoen-
ergy 1 (1999) 1.
The water soluble cobalt(II) tetra-(p-sulfophenyl)porphyrin
was proven to be an efficient catalyst for the oxidation
of 2-aminophenol with molecular oxygen to produce 2-
aminophenoxazine-3-one. A mechanism On the basis of kinetic
data was proposed assuming ternary complex formation between
catalyst, substrate and oxygen. The oxidation of 2-aminophenol
with hydrogen peroxide to 2-aminophenoxazine-3-one has
been found to be efficiently catalyzed by manganese(III)tetra(4-
sulfophenyl)porphyrin.
[42] M. Hassanein, S. Gerges, M. Abdo, S. El-Khalafy, J. Mol. Catal. A: Chem. 268
(2007) 24.
[43] T.S. Srivastava, M. Tsutsui, J. Org. Chem. 83 (1973) 2103.
[44] H. Turk, W.T. Ford, J. Org. Chem. 56 (1991) 2103.
[45] L. Michlaelis, M.L. Menten, Biochem. Z. 49 (1913) 333.
[46] H. Lineweaver, D. Burk, J. Am. Chem. Soc. 56 (1934) 658.
[47] X.-Y. Wang, R.J. Motekaitis, A.E. Martell, Inorg. Chem. 23 (1984) 271.
[48] W. Nam, I. Kim, M.H. Lim, H.J. Choi, J.S. Lee, H.G. Jang, Chem. Eur. J. 8 (2002)
2067.
The UV–vis spectra showed that the active intermediate in pro-
cess might be oxomanganese(IV)porphyrin.
References
[49] Z. Li, C.-G. Xia, C.-Z. Xu, Tetrahedron Lett. 44 (2003) 9229, and references
therein.
[50] Z. Li, C.-G. Xia, J. Mol. Catal. A: Chem. 214 (2004) 95.
[51] H.-J. Zhang, Y. Liu, Y. Lu, X.-S. He, X. Wang, X. Ding, J. Mol. Catal. A: Chem. 787
(2008) 80.
[1] R. Hage, A. Lienke, Angew. Chem. 118 (2006) 212.
[2] N. Duran, E. Esposito, Appl. Catal. B 28 (2000) 83.
[3] G. Strukul (Ed.), Catalytic Oxidation with Hydrogen Peroxide as Oxidant,
Kluwer, Dordrecht, 1992.
[4] T. Horváth, J. Kaizer, G. Speier, J. Mol. Catal. A: Chem. 215 (2004) 9.