Organic & Biomolecular Chemistry
Paper
describing electronic effects in molecular solvents are still
valid in ionic liquid media for the reaction of substituted benz-
aldehydes 2a–f. The Hammett plots for each of the separate
steps produced good linear correlations, with reaction con-
stants in line with what would be expected for these reaction
types.47 This allows us to suggest that it is not necessary to
modify the substituent parameters when utilising ionic liquid
solvents.
3 A. de la Hoz, A. Diaz-Ortiz and A. Moreno, Chem. Soc. Rev.,
2005, 34, 164–178.
4 H. M. Yau, S. T. Keaveney, B. J. Butler, E. E. L. Tanner,
M. S. Guerry, S. R. D. George, M. H. Dunn, A. K. Croft and
J. B. Harper, Pure Appl. Chem., 2013, 85, 1979.
5 P. Wasserscheid and W. Keim, Angew. Chem., Int. Ed., 2000,
39, 3772–3789.
6 S. Z. El Abedin and F. Endres, Acc. Chem. Res., 2007, 40,
1106–1113.
7 K. R. Seddon, Kinet. Catal. Engl. Transl., 1996, 37, 693–697.
8 C. L. Hussey, Pure Appl. Chem., 1988, 60, 1763–1772.
9 M. J. Earle, J. M. S. S. Esperanca, M. A. Gilea,
J. N. Canongia Lopes, L. P. N. Rebelo, J. W. Magee,
K. R. Seddon and J. A. Widegren, Nature, 2006, 439, 831–
834.
10 J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508–
3576.
11 M. T. Clough, C. R. Crick, J. Grasvik, P. A. Hunt,
H. Niedermeyer, T. Welton and O. P. Whitaker, Chem. Sci.,
2015, 6, 1101–1114.
12 S. T. Keaveney, R. S. Haines and J. B. Harper, in Encyclo-
pedia of Physical Organic Chemistry, ed. U. Wille, Wiley, in
press.
13 J. P. Hallett, C. L. Liotta, G. Ranieri and T. Welton, J. Org.
Chem., 2009, 74, 1864–1868.
14 G. Ranieri, J. P. Hallett and T. Welton, Ind. Eng. Chem. Res.,
2008, 47, 638–644.
15 N. L. Lancaster, T. Welton and G. B. Young, J. Chem. Soc.,
Perkin Trans. 2, 2001, 2267–2270.
Conclusions
In summary, use of the ionic liquid 1 resulted in increased
imine formation relative to acetonitrile, highlighting the poss-
ible synthetic utility of using an ionic liquid solvent for con-
densation reactions. Extensive kinetic analysis showed that the
ionic liquid 1 increased the rate constant for each of the three
individual steps that make up the reaction relative to aceto-
nitrile, with the rate increases generally driven by the ionic
liquid solvating the reagents to a greater extent than the tran-
sition state. The effect of changing the para substituent on the
substrate 2 on the rate constant of each of the three processes
was found to vary between acetonitrile and the ionic liquid 1,
with the Hammett plot for the overall addition-elimination
process being markedly different in [Bmim][N(CF3SO2)2] 1
than in acetonitrile. These differing substituent effects were
found to arise due to the greater susceptibility of the ionic
liquid 1 to respond to subtle changes in the extent of charge
development in the transition state as the electronic nature of
the substituent was varied; this is important as it is the first
time that the sensitivity of an ionic liquid to differing degrees
of charge development has been demonstrated through acti-
vation parameters. Overall, the importance of considering the
delicate balance of microscopic interactions between the ionic
liquid and species along the reaction coordinate has been
further reinforced.
16 H. Yanai, H. Ogura and T. Taguchi, Org. Biomol. Chem.,
2009, 7, 3657–3659.
17 C. Chiappe, D. Capraro, V. Conte and D. Pieraccini, Org.
Lett., 2001, 3, 1061–1063.
18 R. Bini, C. Chiappe, E. Marmugi and D. Pieraccini, Chem.
Commun., 2006, 897–899.
19 R. Bini, C. Chiappe, C. S. Pomelli and B. Parisi, J. Org.
Chem., 2009, 74, 8522–8530.
20 F. D’Anna, V. Frenna, R. Noto, V. Pace and D. Spinelli,
J. Org. Chem., 2006, 71, 5144–5150.
Acknowledgements
21 F. D’Anna, V. Frenna, V. Pace and R. Noto, Tetrahedron,
2006, 62, 1690–1698.
STK acknowledges the support of the Australian government
through the receipt of an Australian Postgraduate Award. JBH
acknowledges financial support from the Australian Research
Council Discovery Project Funding Scheme (Project
DP130102331). The authors would like to acknowledge the
NMR Facility within the Mark Wainwright Analytical Centre at
the University of New South Wales for NMR support.
22 M. J. Earle, S. P. Katdare and K. R. Seddon, Org. Lett., 2004,
6, 707–710.
23 S. T. Keaveney, J. B. Harper and A. K. Croft, RSC Adv., 2015,
5, 35709–35729.
24 B. Kirchner, O. Hollóczki, J. N. Canongia Lopes and
A. A. H. Pádua, Wiley Interdiscip. Rev.: Comput. Mol. Sci.,
2015, 5, 202–214.
25 C. Chiappe and C. S. Pomelli, Phys. Chem. Chem. Phys.,
2013, 15, 412–423.
26 S. Zahn, M. Brehm, M. Brüssel, O. Hollóczki,
M. Kohagen, S. Lehmann, F. Malberg, A. S. Pensado,
M. Schöppke, H. Weber and B. Kirchner, J. Mol. Liq.,
2014, 192, 71–76.
Notes and references
1 A. F. Trindade, P. M. P. Gois and C. A. M. Afonso, Chem.
Rev., 2009, 109, 418–514.
2 C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215– 27 C. D. Hubbard, P. Illner and R. van Eldik, Chem. Soc. Rev.,
1292.
2011, 40, 272–290.
This journal is © The Royal Society of Chemistry 2015
Org. Biomol. Chem., 2015, 13, 8925–8936 | 8935