C O M M U N I C A T I O N S
have smaller external diameters and wall thicknesses than those in
cyclohexane. This implies that the solvent affects the microscopic
structure of the gelators.
In conclusion, we have developed a new gelation system for
organic solvents by the self-assembly of aromatic amines and
amphiphile groups. The thermal and morphological properties
dramatically changed according to the solvent and the size and shape
of the aromatic groups. The microtubular structure formed during
gel formation is unique and reproducible. We expect that our results
can be applied to the preparation of various types of microstructures
by using different aromatic cores and amphiphile groups.
Figure 2. Gel images of the AC2 and AG2 mixture in an inversed vial
(
left). The image was captured by a digital camera ([AC2 + 2AG2] ) 20
Acknowledgment. We thank the MOCIE (Grant No. 10022945)
for financial support. Partial support from the Seoul R&BD is also
acknowledged. H.Y.L. and S.R.N. are grateful to the Ministry of
Education for a BK 21 fellowship.
mM). SEM image of dried gel (right). (bar ) 100 µm.) AC2 and AG2
were mixed in a ratio of 1:2 in cyclohexane.
Supporting Information Available: Experimental details, ad-
ditional SEM images, and photomicroscope images. This material is
available free of charge via the Internet at http://pubs.acs.org.
References
(
1) (a) van Bommel, K. J. C.; Friggeri, A.; Shinkai, S. Angew.Chem., Int.
Ed. 2003, 42, 980-999. (b) Reches, M.; Gazit, E. Nature 2003, 300, 625-
627. (c) Kijima, T.; Yoshimura, T.; Uota, M.; Ikeda, T.; Fujikawa, D.;
Mouri, S.; Uoyama, S. Angew. Chem., Int. Ed. 2004, 43, 228-232.
2) (a) Eisenberg, B. Acc. Chem. Res. 1998, 31, 117-123. (b) Sigler, P. B.;
Xu, Z.; Rye, H. S.; Burston, S. G.; Fenton, W. A.; Horwich, A. L. Annu.
ReV. Biochem. 1998, 67, 581-608. (c) Horwich, A. L.; Weber-Ban, E.
U.; Finley, D. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11033-11040. (d)
Zwickl, P.; Voges, D.; Baumeister, W. Philos. Trans. R. Soc. London,
Ser. B 1999, 354, 1501-1511.
Figure 3. SEM images of the dried AC2 and AG2 mixture in a ratio of
1
:2 in decalin (left, bar ) 50 µm; right, bar ) 5 µm).
(
dramatic change in Tgel was observed by the addition of one
aromatic ring. Therefore, we can deduce that the π-π interactions
between the aromatic cores may play an important role in stabilizing
the gel.
The microstructures of the two-component gel aggregates were
significantly changed by the replacement of the AC groups. The
scanning electron microscopy (SEM) image of the mixture of AC1
and AG2 in cyclohexane and decalin showed fiberlike structures.10
A 1:2 mixture of AC1 and AG2 results in a clear gel.
However, in the case of the mixture of AC2 and AG2 in
cyclohexane, fibrous structures in the gel medium, which were
revealed to be microtubules, were observed with the naked eye
(3) (a) Iijima, S. Nature 1991, 354, 56-58. (b) Ajayan, P. M. Chem. ReV.
999, 99, 1787-1800.
(
1
4) (a) Suenaga, K.; Colliex, C.; Demoncy, N.; Loiseau, A.; Pascard, H.;
Willaime, F. Science 1997, 278, 653-655. (b) Chopra, N. G.; Luyken,
R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A.
Science 1995, 269, 966-967. (c) Stephan, O.; Ajayan, P. M.; Colliex,
C.; Redlich, P.; Lambert, J. M.; Bernier, P.; Lefin, P. Science 1994, 266,
1
683-1685. (d) Remskar, M.; Mrzel, A.; Skraba, Z.; Jesih, A.; Ceh, M.;
Dem sˇ ar, J.; Stadelmann, P.; Le’vy, F.; Mihailovic, D. Science 2001, 292,
479-481. (e) Hacohen, Y. R.; Grunbaum, E.; Tenne, R.; Sloan, J.;
Hutchison, J. L. Nature 1998, 395, 336-337.
(
5) (a) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem.,
Int. Ed. 2001, 40, 988-1011. (b) Kim, Y.; Mayer, M. F.; Zimmerman, S.
C. Angew. Chem., Int. Ed. 2003, 42, 1121-1126. (c) Vauthey, S.; Santoso,
S.; Gong, H.; Watson, N.; Zhang, S. Proc. Natl. Acad. Sci. U.S.A. 2002,
(Figure 2, left). The SEM image of a dried gel shows two distinct
microstructures (fibrous and tubular structures). The fibrous
structures contribute to the gelation of cyclohexane and tubular
structures pass through them. Microtubules can be separated by
filtration after vigorously stirring the diluted gel. In most cases,
the microtubular structures were collapsed or were deprived of their
tubular function without a solvent. However, the separated micro-
tubules retained their hollow tubular structure without the solvent
and were stable in air. The photomicroscope and SEM images
clearly show hollow tubular structures with uniform external
diameters of 30-40 µm and wall thicknesses of 2-3 µm. The
length of the longest tubule is 5 mm. We performed the same tests
more than twenty times and obtained the same reproducible results.
The reproducible formation of microtubules implies that the tubular
structures have a definite composition of AC2 and AG2. The flat
structure and hydrogen-bonding sites in the amphiphile group (AG2)
are likely to facilitate the π-π interactions of the aromatic cores.
We could also observe microtubules in the gel of AC2 and AG2
in delcalin, which were smaller than those in the cyclohexane gel.
The SEM images clearly show a hollow space (Figure 3).
Microtubules have external diameters of 5-10 µm, lengths of 20-
99, 5355-5360.
(6) Reviews: (a) Abdallah, D. J.; Weiss, R. G. AdV. Mater. 2000, 12, 1237-
1
247. (b) van Esch, J. H.; Feringa, B. L. Angew. Chem., Int. Ed. 2000,
3
9, 2263-2267. (c) Terech, P.; Weiss, R. G. Chem. ReV. 1997, 97, 3133-
3160. (d) Shimizu, T. Macromol. Rapid Commun. 2002, 23, 311-331.
(e) Gronwald, O.; Shinkai, S. Chem.sEur. J. 2001, 7, 4329-4334.
(7) (a) John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. AdV. Mater.
2
001, 13, 715-718. (b) Hafkamp, R. J. H.; Feiters, M. C.; Nolte, R. J.
M. J. Org. Chem. 1999, 64, 412-426. (c) Fuhrhop, J.-H.; Spiroski, D.;
Boettcher, C. J. Am. Chem. Soc. 1993, 115, 1600-1601. (d) Masuda,
M.; Shimizu, T. Langmuir 2004, 20, 5969-5977.
(8) Self-assembled microtubes: (a) Wong, G. C. L.; Tang, J. X.; Lin, A.; Li,
Y.; Janmey, P. A.; Safinya, C. R. Science 2000, 288, 2035-2039. (b)
Yan, D.; Zhou, Y.; Hou, J. Science 2004, 303, 65-67. (c) Shimizu, T.;
Kosigo, M.; Masuda, M. Nature 1996, 383, 487-488. (d) Shimizu, T.;
Kosigo, M.; Masuda, M. J. Am. Chem. Soc. 1997, 119, 6209-6210. (e)
Douliez, J.-P.; Gaillard, C.; Navailles, L.; Nallet, F. Langmuir 2006, 22,
2942-2945.
(
9) (a) Smith, D. K. Chem. Commun. 2006, 34-44. (b) Patridge, K. S.; Smith,
D. K.; Dykes, G. M.; McGrail, T. P. Chem. Commun. 2001, 319-320.
(
c) Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M.; Wright,
A. C. J. Am. Chem. Soc. 2003, 125, 9010-9011. (d) Hardy, J. G.; Hirst,
A. R.; Smith, D. K.; Brennan, C.; Ashworth, I. Chem. Commun. 2005,
3
85-387. (e) Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M.
Chem. Eur. J. 2004, 10, 5901-5910. (f) Hirst, A. R.; Smith, D. K. Chem.s
Eur. J. 2005, 11, 5496-5508. (g) Hirst, A. R.; Smith, D. K.; Harrington,
J. P. Chem.sEur. J. 2005, 11, 6552-6559. (h) Yagai, S.; Nakajima, T.;
Kishikawa, K.; Kohmoto, S.; Karatsu, T.; Kitamura, A. J. Am. Chem.
Soc. 2005, 127, 11134-11139. (i) Oda, R.; Huc, I.; Candau, S. J. Angew.
Chem., Int. Ed. 1998, 37, 2689-2691. (j) Zemb, T.; Dubois, M.; Dem e´ ,
B.; Gulik-Krzywicki, T. Science 1999, 283, 816-819.
70 µm, and wall thicknesses of 0.5-1 µm. The microtubules formed
in decalin are faceted, while those formed in cyclohexane show a
round shape. In the case of the delcalin gel, we failed to separate
the microtubules in the gel medium. The microtubules in decalin
(
10) See the Supporting Information.
JA0676197
J. AM. CHEM. SOC.
9
VOL. 129, NO. 5, 2007 1041