F. Brucoli et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3780–3783
3783
was oriented towards the 30-end of the covalently-modified strand
with a S-configuration at the C11-position of the PBD, consistent
with observations reported in the literature.11 Subsequent minimi-
zation was performed using AMBER, initially applying a large posi-
tional restraint to the DNA only. This was gradually reduced to zero
in further rounds of minimization. A long range non-bonded cut-
off was applied along with use of the GBSA implicit solvent model
and monovalent ion screening (0.2 M). After the energy minimiza-
tion procedure, both bound conjugates appeared to be well-accom-
modated within the DNA minor groove with virtually no induced
distortion of the overall host duplex structure. Figure 2B shows
the excellent fit achieved by the most potent ligand 2d in the min-
or groove of the ICB1 sequence when covalently bound to the C2-
NH2 of G5. Surprisingly, there were no obvious differences be-
tween the two models in terms of distortions or steric interactions
that might account for the large difference in experimental binding
affinities observed for 2a and 2d.
ship for R.M.H. (Earmarked QUOTA Award 01300211), and Cancer
Research UK for funding to D.E.T. (C180/A1060, SP1938/0402,
SP1938/0201 and SP1938/0301) and J.A.H. (C2259/A9994).
References and notes
1. Mantovani, R. Gene 1999, 239, 15.
2. Higuchi, T.; Anzai, K.; Kobayashi, S. Biochim. Biophys. Acta-Gen. Subj. 2008, 1780,
274.
3. Ronchi, A.; Bellorini, M.; Mongelli, N.; Mantovani, R. Nucleic Acids Res. 1995, 23,
4565.
4. Sandri, M. I.; Isaacs, R. J.; Ongkeko, W. M.; Harris, A. L.; Hickson, I. D.; Broggini,
M.; Vikhanskaya, F. Nucleic Acids Res. 1996, 24, 4464.
5. Marziali, G.; Perrotti, E.; Ilari, R.; Coccia, E. M.; Mantovani, R.; Testa, U.;
Battistini, A. Blood 1999, 93, 519.
6. Matuoka, K.; Chen, K. Y. Ageing Res. Rev. 2002, 1, 639.
7. Di Agostino, S.; Strano, S.; Emiliozzi, V.; Zerbini, V.; Mottolese, M.; Sacchi, A.;
Blandino, G.; Piaggio, G. Cancer Cell 2006, 10, 191.
8. Imbriano, C.; Gurtner, A.; Cocchiarella, F.; Di Agostino, S.; Basile, V.; Gostissa,
M.; Dobbelstein, M.; Del Sal, G.; Piaggio, G.; Mantovani, R. Mol. Cell. Biol. 2005,
25, 3737.
A further investigation centred on evaluating the free energy of
binding by constructing the two ligands in their most appropriate
conformations prior to covalent interaction. This was followed by
graphical alignment in the minor groove by placing the N10 of each
PBD moiety with its partial negative charge in close proximity to
the partial positive charge of a C2-NH2 hydrogen of guanine-5. A
similar stepwise minimization procedure as used for the cova-
lently-bound ligands was then applied, and free energy calcula-
tions undertaken using the AMBER MM-PBSA approach. This
involved extracting 200 frames from a 2ns molecular dynamics
simulation followed by calculation of the average free energy of
binding in each case. However, this methodology also failed to pro-
vide an explanation for the observed difference in binding affinity
between 2a and 2d. Perhaps this reflects the limitations of model-
ing approaches of this type to discriminate between ligands with
relatively small structural differences when binding to a complex
target such as DNA.
9. Tolner, B.; Hartley, J. A.; Hochhauser, D. Mol. Pharmacol. 2001, 59, 699.
10. Mackay, H.; Brown, T.; Sexton, J. S.; Kotecha, M.; Nguyen, B.; Wilson, W. D.;
Kluza, J.; Savic, B.; O’Hare, C.; Hochhauser, D.; Lee, M.; Hartley, J. A. Bioorg. Med.
Chem. 2008, 16, 2093.
11. Wells, G.; Martin, C. R. H.; Howard, P. W.; Sands, Z. A.; Laughton, C. A.;
Tiberghien, A.; Woo, C. K.; Masterson, L. A.; Stephenson, M. J.; Hartley, J. A.;
Jenkins, T. C.; Shnyder, S. D.; Loadman, P. M.; Waring, M. J.; Thurston, D. E. J.
Med. Chem. 2006, 49, 5442.
12. Kotecha, M.; Kluza, J.; Wells, G.; O’Hare, C. C.; Forni, C.; Mantovani, R.; Howard,
P. W.; Morris, P.; Thurston, D. E.; Hartley, J. A.; Hochhauser, D. Mol. Cancer Ther.
2008, 7, 1319.
13. Dervan, P. B. Bioorg. Med. Chem. 2001, 9, 2215.
14. Boger, D. L.; Fink, B. E.; Hedrick, M. P. J. Am. Chem. Soc. 2000, 122, 6382.
15. Data for 2d: A pale yellow solid (30% yield). 1H NMR (acetone-d6) (400 MHz):
d 11.29 (s, 1H, N–H), 9.28 (s, 1H, N-H), 7.81 (s, 1H, Th-H), 7.74 (d, 1H,
J = 4.4 Hz, H-11), 7.53 (d, 1H, J = 1.9 Hz, Py-H), 7.40 (s, 1H, H-6), 6.96 (d, 1H,
J = 2.0 Hz, Py-H), 6.81 (s, 1H, H-9), 4.19 (m, 2H, side chain H-1), 3.91 (s, 3H,
O/N-CH3), 3.87 (s, 3H, O/N–CH3), 3.77 (s, 3H, O/N–CH3), 3.69 (m, 1H, H-11a),
3.46 (m, 2H, H-3), 2.53 (s, 2H, side chain H-3), 2.36 (m, 2H, H-1), 2.26 (m,
2H, side chain H-2), 2.09 (s, 2H, H-2); LC–MS m/z (ES+): 595 ([M+H]+); Acc.
Mass C28H30N6O7S: calcd 595.1070, found 595.1957 ([M+H]+).
16. McConnaughie, A. W.; Jenkins, T. C. J. Med. Chem. 1995, 38, 3488.
17. Bose, D. S.; Thompson, A. S.; Smellie, M.; Berardini, M. D.; Hartley, J. A.; Jenkins,
T. C.; Neidle, S.; Thurston, D. E. Chem. Commun. 1992, 1518.
18. Thurston, D. E.; Bose, D. S.; Howard, P. W.; Jenkins, T. C.; Leoni, A.; Baraldi, P. G.;
Guiotto, A.; Cacciari, B.; Kelland, L. R.; Foloppe, M. P.; Rault, S. J. Med. Chem.
1999, 42, 1951.
In summary, these results demonstrate that it is possible to
modify the C8-bis-pyrrole side chain of GWL-78 (1b) to improve
DNA binding affinity and selectivity for specific ICB sites within
the human Topo-IIa promoter, although it is not yet possible to
19. The ‘0 h’ values shown actually reflect ꢀ30 min equilibration heating within
the instrument used for the Tm assay. This is unavoidable and cannot be
circumvented in temperature scan-based assays. Heating was applied at a rate
of 1 °C/min in the 50–99 °C temperature range, with optical and temperature
data sampling at 100 ms intervals. A separate experiment was carried out
using buffer alone, and this baseline was subtracted from each DNA melting
curve before data treatment. Experiments were conducted in triplicate.
20. Ellis, T.; Evans, D. A.; Martin, C. R. H.; Hartley, J. A. Nucleic Acids Res. 2007, 35.
Article No.: e89.
21. Case, D. A.; Darden, T. A.; Cheatham III, T. E.; Simmerling, C. L.; Wang, J.; Duke,
R. E.; Luo, R.; Merz, K. M.; Pearlman, D. A.; Crowley, M.; Walker, R. C.; Zhang,
W.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K. F.; Paesani, F.; Wu, X.;
Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.;
Beroza, P.; Mathews, D. H.; Schafmeister, C.; Ross, W. S.; Kollman, P. A.
University of California, San Francisco, 2006.
rationalize how the improved activity of 2d relates to the struc-
tural change. Further studies of 2d are underway to evaluate its
ability to stabilize shorter fragments of DNA containing the ICB
binding sequence, and to determine whether it can inhibit the
binding of NF-Y to DNA in cells using methods such as chromatin
immunoprecipitation (ChIP). In addition, the effect of extending
the length of 2d with further heterocycles is being investigated.
Acknowledgments
Dr. Emma Sharp is gratefully acknowledged for her help with
preparing the manuscript. The authors thank EPSRC for a student-