Communication
Dalton Transactions
became unstable in the redox environment, likely due to the
occurrence of a cross-linking reaction44 upon application of
the reductive potential (Fig. S6†).
In summary, we report the synthesis of cyclic peptoid-Fe(III)
complexes and their characterization by UV-vis spectroscopy,
fluorescence spectroscopy, EPR spectroscopy, and DFT calcu-
7 L. D. Loomis and K. N. Raymond, Inorg. Chem., 1991, 30,
906–911.
8 E. A. Dertz, J. D. Xu, A. Stintzi and K. N. Raymond, J. Am.
Chem. Soc., 2006, 128, 22–23.
9 C. B. Modell and J. Beck, Ann. N. Y. Acad. Sci., 1974, 232,
201–210.
lations. Simple display of three catechols on cyclic peptoids (1 10 M. Ghosh, P. A. Miller, U. Möllman, W. D. Claypool,
and 2) did not lead to the formation of a stable tris(catecho-
lato) iron(III) complex. Mimicking the natural siderophore
enterobactin, incorporation of amide next to the catechol and
V. A. Schroeder, W. R. Wolter, M. Suckow, H. Yu, S. Li,
W. Huang, J. Zajicek and M. J. Miller, J. Med. Chem., 2017,
60, 4577–4583.
orienting two hydroxyls toward the center of the macrocycle 11 R. J. Abergel, A. M. Zawadzka, T. M. Hoette and
led to successful formation of the tris(catecholato) iron(III) K. N. Raymond, J. Am. Chem. Soc., 2009, 131, 12682–12692.
complex. The 3-Fe(III) complex demonstrated the importance 12 F. Ecker, H. Haas, M. Groll and E. M. Huber, Angew. Chem.,
of intramolecular hydrogen bonds between amide protons and Int. Ed., 2018, 57, 14624–14629.
catechol oxygen atoms to stabilize the tris-complex with a 1 : 1 13 E. J. Corey and S. D. Hurt, Tetrahedron Lett., 1977, 18, 3923–
stoichiometry. An increased ring size compared to that of 3924.
enterobactin led to decreased iron affinity; however, the three 14 Q. Zhang, B. Jin, Z. Shi, X. Wang, Q. Liu, S. Lei and
extra residues left room for further chemical diversification or R. Peng, Sci. Rep., 2016, 6, 34024.
conjugation with other bioactive molecules. Our peptoid-Fe(III) 15 F. L. Weitl and K. N. Raymond, J. Am. Chem. Soc., 1979,
complex may expand the field of siderophore mimicry toward 101, 2728–2731.
novel sideromycin design or antibiotic strategies by nutritional 16 U. Möllmann, A. Ghosh, E. K. Dolence, J. A. Dolence,
immunity.45
M. Ghosh, M. J. Miller and R. Reissbrodt, BioMetals, 1998,
11, 1–12.
17 M. Baskin and G. Maayan, Biopolymers, 2015, 104, 577–584.
18 K. J. Prathap and G. Maayan, Chem. Commun., 2015, 51,
11096–11099.
Conflicts of interest
There are no conflicts of interest to declare.
19 R. N. Zuckermann, J. M. Kerr, S. B. H. Kent and
W. H. Moos, J. Am. Chem. Soc., 1992, 114, 10646–10647.
20 T. B. Karpishin and K. N. Raymond, Angew. Chem., Int. Ed.,
1992, 31, 466–468.
21 K. N. Raymond, E. A. Dertz and S. S. Kim, Proc. Natl. Acad.
Sci. U. S. A., 2003, 100, 3584–3588.
Acknowledgements
This work was financially supported by the National
Research Foundation of Korea (NRF-2018R1A2B6007535) 22 T. C. Johnstone and E. M. Nolan, J. Am. Chem. Soc., 2017,
and by the Creative Materials Discovery Program 139, 15245–15250.
(NRF-2018M3D1A1052659), which is funded by the National 23 Z. Liu, B.-H. Hu and P. B. Messersmith, Tetrahedron Lett.,
Research Foundation (NRF) under the Ministry of Science and 2010, 51, 2403–2405.
ICT. The authors are also grateful to the Korean Basic Science 24 R. A. Gardner, R. Kinkade, C. Wang and O. Phanstiel IV,
Institute (KBSI) in Gwangju for instrumentation support (1H
and 13C NMR measurements).
J. Org. Chem., 2004, 69, 3530–3537.
25 S. Lei, B. Jin, Q. Zhang, Z. Zhang, X. Wang, R. Peng and
S. Chu, Polyhedron, 2016, 119, 387–395.
26 S. B. Y. Shin, B. Yoo, L. J. Todaro and K. Kirshenbaum,
J. Am. Chem. Soc., 2007, 129, 3218–3225.
27 N. Holten-Andersen, M. J. Harrington, H. Birkedal,
B. P. Lee, P. B. Messersmith, K. Y. C. Lee and J. H. Waite,
Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 2651–2655.
Notes and references
1 M. Georgiadis, H. Komiya, P. Chakrabarti, D. Woo,
J. Kornuc and D. Rees, Science, 1992, 257, 1653–1659.
2 D. H. Ohlendorf, J. D. Lipscomb and P. C. Weber, Nature, 28 H. Zeng, D. S. Hwang, J. N. Israelachvili and J. H. Waite,
1988, 336, 403–405. Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 12850–12853.
3 T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, 29 M. J. Sever and J. J. Wilker, Dalton Trans., 2004, 7, 1061–
H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono
and S. Yoshikawa, Science, 1995, 269, 1069–1074.
4 J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel,
J. Mol. Biol., 1984, 180, 385–398.
1072.
30 A. D’Amato, P. Ghosh, C. Costabile, G. Della Sala, I. Izzo,
G. Maayan and F. De Riccardis, Dalton Trans., 2020, 49,
6020–6029.
5 B. Halliwell and J. M. C. Gutteridge, Biochem. J., 1984, 219, 31 Rahmi and H. Itagaki, J. Photopolym. Sci. Technol., 2011, 24,
1–14. 517–521.
6 R. M. Smith and A. E. Martell, Sci. Total Environ., 1987, 64, 32 N. Guo, X. You, Y. Wu, D. Du, L. Zhang, Q. Shang and
125–147.
W. Liu, Anal. Chem., 2020, 92, 5780–5786.
3462 | Dalton Trans., 2021, 50, 3459–3463
This journal is © The Royal Society of Chemistry 2021