Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
DOI: 10.1039/C8CC00158H
2
(a) S. G. Zhang, T. Holmes, C. Lockshin, and A. Rich, Proc.
Natl. Acad. Sci. USA 1993, 90, 3334; (b) G. E. Schulz, Curr.
Opin. Struct. Biol., 2000, 10, 443; (c) H. Tao, S. Chang Lee, A.
Moeller, R. Sinha Roy, F. Yiu Siu, J. Zimmermann, R. C
Stevens, C. S Potter, B. Carragher and Q. Zhang, Nat.
Methods, 2013, 10, 759; (d) N. L. Truex, Y. Wang, and J. S.
Nowick, J. Am. Chem. Soc., 2016, 138, 13882.
L. A. Haines, K. Rajagopal, B. Ozbas, D. A. Salick, D. J. Pochan,
and J. P. Schneider, J. Am. Chem. Soc., 2005, 127, 17025; (b)
C. Tomasini, and N. Castellucci, Chem. Soc. Rev., 2013, 42,
conjugated nanofibers is assumed to function similar to
molecular wires’ (Fig. 3a).15 Further, we estimated the lowest
‘
detection limit (LOD) for TNB and TNT with the highest FL
quenching. A concentration dependent study in a range of 10-
500 µM was performed and LOD for TNB and TNT detection
was found to as 13.4 and 17.8 µM in solution, respectively (Fig.
S9, ESI†).
3
4
5
The visual detection of NAC explosives at extremely low
concentrations was achieved in a film-based experiment. The
NACs have high vapour pressure and can contaminate the
surroundings. We designed a film-based sensory system by
quartz-coating with bicomponent assembly-system of
dipeptide amphiphiles at a total concentration of 250 µM. The
fluorescent films responded to various NACs and turned black,
as observed under UV light. The dark spot on the fluorescent
film under the UV light is established as a tool for visual
detection of explosive. This fluorescent thin film-based
method achieved superior detection (5 fold intensity change)
at concentration as low as 5 nM (1 ppb) and 100 nM 27 ppb)
for both TNB and TNT, respectively (Fig. S10, ESI†).
1
56.
(a) J. D. Hartgerink, E. Beniash, and S. I. Stupp, Science, 2001,
94, 1684; (b) M. B. Avinash, and T. Govindaraju, Adv.
2
Mater., 2012, 24, 3905; (c) S. Mondal, and E. Gazit,
ChemNanoMat, 2016, 2, 323.
(a) A. Mahler, M. Reches, M. Rechter, S. Cohen, and E. Gazit,
Adv. Mater., 2006, 18, 1365; (b) E. K. Ohnson, D. J. Adams,
and P. J. Cameron, J. Am. Chem. Soc., 2010, 132, 5130; (c) C.
K. Thota, N. Yadav, and V. S. Chauhan, Sci. Rep., 2016, 6,
3
1167; (d) M. P. Conte, N. Singh, I. R. Sasselli, B. Escuder, and
R. V. Ulijn, Chem. Commun., 2016, 52, 13889 (e) K. Tao, A.
Levin, L. A.-Abramovich, and E. Gazit, Chem. Soc. Rev., 2016,
4
5, 3935; (f) J. Wang, K. Liu, R. Xing, and X. Yan, Chem. Soc.
Rev., 2016, 45, 5589.
6
(a) M. B. Avinash, P. K. Samanta, K. V. Sandeepa, S. K. Pati,
and T. Govindaraju, Eur. J. Org. Chem., 2013, 5838; (b) M.
Pandeeswar, S. P. Senanayak, K. S. Narayan, and T.
Govindaraju, J. Am. Chem. Soc., 2016, 138, 8259; (c) N.
In summary, a fluorescent hydrogel formed by the
bicomponent assembly of two dipeptide-amphiphiles of
opposite polarity (TGM-82 and TGM-83) is developed for the
selective and sensitive detection of NACs, including the most
challenging ones such as nitrophenol, trinitrobenzene and
trinitrotoluene. The antiparallel β-sheet induced co-assembly
of the dipeptides directed the helical organisation of pyrene
chromophores that provide a suitable microenvironment to
intercalate guest NACs. The sensing mechanism of NACs is
attributed to the proposed pyrene-NAC-pyrene “sandwich-
like” interaction that allowed efficient long-range exciton
migration. The sensitivity was amplified by developing thin
film-based detection platform, which also facilitated quick and
reliable visual detection of NACs. Overall, we presented a
novel design strategy and detailed study that provides a new
insight into the design of peptide-based explosive sensors,
which are likely to be useful in protecting human health,
environment and security related issues.
Nagarjun,
M.
Unnikrishnan,
M.
Gupta
and T.
Govindaraju, Bioorg. Med. Chem. Lett., 2015, 25, 2395; (d) K.
Sugiyasu, S.-i. Kawano, N. Fujita, and S. Shinkai, Chem.
Mater., 2008, 20, 2863; (e) D. Maity, M. Li, M. Ehlers, and C.
Schmuck, Chem. Commun., 2017, 53, 208.
7
8
9
1
(a) X. Sun, Y. Wang, and Yu Lei, Chem. Soc. Rev., 2015, 44,
8
019; (b) M. HaoWong, J. P. Giraldo, S.-Y. Kwak, V. B. Koman,
and R. Sinclair, Nat. Matter., 2017, 16, 264.
T. F. Jenkins, D. C. Leggett, T. A. Ranney, Army US Cold
Regions Research and Engineering Laboratory, Special Report
9
9-21, Hanover 1999.
S. B. Haderlein, and R. P. Schwarzenbach, Biodegradation of
Nitroaromatic Compounds, ed. J. C. Spain, Springer, vol. 49,
1995.
0 (a) K. K. Kartha, S. S. Babu, S. Srinivasan, and A. Ajayaghosh,
J. Am. Chem. Soc., 2012, 134, 4834; (b) S. S. Nagarkar, B.
Joarder, A. K. Chaudhari, S. Mukherjee, and S. K. Ghosh,
Angew. Chem. Int. Ed., 2013, 52, 2881; (b) M. Liu, and W.
Chen, Biosens. Bioelectron., 2013, 46, 68; (c) P. Beyazkilic, A.
Yildirim, and M. Bayindir, Nanoscale, 2014, 6, 15203; (d) N.
Venkatramaiah, A. D. G. Firmino, F. A. Almeida Paz, and J. P.
C. Tome, Chem. Commun., 2014, 50, 9683; (e) Y, T. Y., A.
Ambrosi, and M. Pumera, Sci. Rep., 2016, 6, 33276.
1 F. M. Winnik, Chem. Rev., 1993, 93, 587.
Authors thank Prof. C. N. R. Rao FRS for constant support,
SwarnaJayanti Fellowship, DST (DST/SJF/CSA-02/2015-2016),
DBT (BT/PR10263/NNT/28/711/2013), Govt. of India, Shiekh
Saqr Laboratory (SSL), JNCASR for financial support, Anton Paar
India Pvt Ltd., India for rheology measurements.
1
1
2 P. Bairi, B. Roy, P. Routh, K. Sen, and A. K. Nandi, Soft Matter,
2012, 8, 7436.
3 A. M. Smith, R. J. Williams, C. Tang, P. Coppo, R. F. Collins, M.
L. Turner, A. Saiani, and R. V. Ulijn, Adv. Mater., 2008, 20, 37.
Conflicts of interest
Authors declare no conflicts of interest.
1
1
4 Formation of
a non-fluorescent fluorophore–quencher
complex is the origin of the static quenching, and any
molecules not bound to an analyte will significantly decay
with their native natural lifetime (see 7b).
5 (a) C. Li, M. Numata, A.-H. Bae, K. Sakurai, and S. Shinkai, J.
Am. Chem. Soc., 2005, 127, 4548; (b) C. Guo,, X. Yu, S.
Refaely-Abramson, L. Sepunaru, T. Bendikov, I. Pecht, L.
Kronik, A. Vilan , M. Sheves, and D. Cahen, PNAS, 2016, 116,
Notes and references
1
(a) A. M. Smith, S. F. A. Acquah, N. Bone, H. W. Kroto, M. G.
Ryadnov, M. S. P. Stevens, D. R. M. Walton, and D. N.
Woolfson, Angew. Chem. Int. Ed., 2005, 44, 325; (b) A.
Lomander, W. Hwang, and S. Zhang, Nano Letters, 2005, 7,
1
1
255; (c) C. Aronsson, S. Danmark, F. Zhou, P. Öberg, K.
1
0785.
Enander, H. Su and Daniel Aili, Sci. Rep., 2015, 5, 14063.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins