The Journal of Physical Chemistry A
Article
mechanism is similar to that of the weak organic acids in the
(17) Leenheer, J. A.; Croue, J. P. Environ. Sci. Technol. 2003, 37,
8A−26A.
−
1
heterogeneous reaction of I with ozone in the pH range of 3−
2
5
(18) Saiz-Lopez, A.; Plane, J. M. C. Geophys. Res. Lett. 2004, 31,
5
. However, humic acid does not affect this. This difference is
L04112.
due to the fact that humic acid precipitates under acidic
conditions.
(19) Read, K. A.; Mahajan, A. S.; Carpenter, L. J.; Evans, M. J.; Faria,
B. V. E.; Heard, D. E.; Hopkins, J. R.; Lee, J. D.; Moller, S. J.; Lewis, A.
C.; Mendes, L.; McQuaid, J. B.; Oetjen, H.; Saiz-Lopez, A.; Pilling, M.
J.; Plane, J. M. C. Nature 2008, 453, 1232−1235.
The atmospheric precipitation study indicates that typical
atmospheric aerosols are mildly acidic as a result of the uptake
of acidic gas, such as carbon dioxide and nitric acid, or acidified
in situ by the oxidation of dissolved S(IV), even in clean marine
air. Moreover, aerosols are expected to be strongly acidified in
urban areas where polluted with acidic gases, such as nitrogen
(20) Saiz-Lopez, A.; Chance, K.; Liu, X.; Kurosu, T. P.; Sander, S. P.
Geophys. Res. Lett. 2007, 34, L12812.
(21) Saiz-Lopez, A.; Shillito, J. A.; Coe, H.; Plane, J. M. C. Atmos.
Chem. Phys. 2006, 6, 1513−1528.
41−45
(22) Saiz-Lopez, A.; Mahajan, A. S.; Salmon, R. A.; Bauguitte, S. J. B.;
oxide or sulfur oxide.
The enhancement of the I (g)
2
Jones, A. E.; Roscoe, H. K.; Plane, J. M. C. Science 2007, 317, 348−
51.
23) Sakamoto, Y.; Yabushita, A.; Kawasaki, M.; Enami, S. J. Phys.
Chem. A 2009, 113, 7707−7713.
24) Hayase, S.; Yabushita, A.; Kawasaki, M.; Enami, S.; Hoffmann,
M. R.; Colussi, A. J. J. Phys. Chem. A 2010, 114, 6016−6021.
25) Hayase, S.; Yabushita, A.; Kawasaki, M.; Enami, S.; Hoffmann,
concentrations by the undissociated carboxylic group in the pH
3
(
range from 3 to pK and suppression of the IO(g) and I (g)
a
2
emission occur in ambient atmospheric air as a result of the
3
0,31
high reactivity of simple phenols with O at pH > 3.
The
3
(
widely distributed aqueous fulvic acid accelerates the I (g)
2
−
emission in the pH range of 3−5. Thus, the acidity of I
(
containing aerosols and chemical species control iodine transfer
between water and air.
M. R.; Colussi, A. J. J. Phys. Chem. A 2011, 115, 4935−4940.
(26) Ninomiya, Y.; Hashimoto, S.; Kawasaki, M.; Wallington, T. J.
Int. J. Chem. Kinet. 2000, 32, 125−130.
AUTHOR INFORMATION
(27) Nakano, Y.; Enami, S.; Nakamichi, S.; Aloisio, S.; Hashimoto, S.;
Kawasaki, M. J. Phys. Chem. A 2003, 107, 6381−6387.
■
(28) CRC Handbook of Chemistry and Physics, 90th ed.; CRC Press:
*
Boca Raton, FL, 2010.
Notes
(29) Skogerboe, R. K.; Wilson, S. A. Anal. Chem. 1981, 53, 228−232.
(
(
(
30) Hoigne, J.; Bader, H. Water Res. 1983, 17, 173−183.
31) Hoigne, J.; Bader, H. Water Res. 1983, 17, 185−194.
32) Leenheer, J. A.; Wershaw, R. L.; Reddy, M. M. Environ. Sci.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by grants-in-aid from JSPS (Grants
Nos. 20245005 and 23684045). The authors thank Prof.
■
Technol. 1995, 29, 393−398.
(33) Leenheer, J. A.; Wershaw, R. L.; Reddy, M. M. Environ. Sci.
(35) Hoigne, J.; Bader, H. Water Res. 1985, 19, 993−1004.
(36) Galapate, R. P.; Baes, A. U.; Okada, M. Water Res. 2001, 35,
́
Michael R. Hoffmann, Drs. Agustin J. Colussi and Shinichi
Enami of California Institute of Technology for stimulating
discussions.
2
(
1
(
201−2206.
37) Brigante, M.; Zanini, G.; Avena, M. Colloids Surf., A 2009, 347,
80−186.
38) Carpenter, L. J.; Hopkins, J. R.; Jones, C. E.; Lewis, A. C.;
REFERENCES
■
(
(
(
1) Goss, K. U. J. Phys. Chem. A 2009, 113, 12256−11259.
2) Valsaraj, K. T. Pure Appl. Chem. 2009, 81, 1889−1901.
3) Donaldson, D. J.; Valsaraj, K. T. Environ. Sci. Technol. 2010, 44,
Parthipan, R.; Wevill, D. J.; Poissant, L.; Pilote, M.; Constant, P.
Environ. Sci. Technol. 2005, 39, 8812−8816.
8
(
8
(
2
(
65−873.
4) Donaldson, D. J.; Anderson, D. J. Phys. Chem. A 1999, 103, 871−
76.
5) Park, S. C.; Burden, D. K.; Nathanson, G. M. Acc. Chem. Res.
009, 42, 379−387.
6) Krisch, M. J.; D’Auria, R.; Brown, M. A.; Tobias, D. J.;
(39) Gilfedder, B. S.; Lai, S. C.; Petri, M.; Biester, H.; Hoffmann, T.
Atmos. Chem. Phys. 2008, 8, 6069−6084.
40) Martino, M.; Mills, G. P.; Woeltjen, J.; Liss, P. S. Geophys. Res.
Lett. 2009, 36, L01609.
(
(
(
41) Granat, L. Tellus 1972, 24, 550−560.
42) Losno, R.; Bergametti, G.; Carlier, P.; Mouvier, G. Atmos.
Hemminger, J. C.; Ammann, M.; Starr, D. E.; Bluhm, H. J. Phys. Chem.
C 2007, 111, 13497−13509.
Environ. 1991, 25, 763−770.
(43) Pszenny, A. A. P.; Moldanov, J.; Keene, W. C.; Sander, R.;
(
(
7) Donaldson, D. J.; Vaida, V. Chem. Rev. 2006, 106, 1445−1461.
8) Rouviere, A.; Ammann, M. Atmos. Chem. Phys. 2010, 10, 11489−
Maben, J. R.; Martinez, M.; Crutzen, P. J.; Perner, D.; Prinn, R. G.
Atmos. Chem. Phys. 2004, 4, 147−168.
11500.
(44) Keene, W. C.; Pszenny, A. A. P.; Maben, J. R.; Sander, R.
(
9) Park, S. C.; Burden, D. K.; Nathanson, G. M. J. Phys. Chem. A
007, 111, 2921−2929.
10) Frinak, E. K.; Abbatt, J. P. D. J. Phys. Chem. A 2006, 110,
0456−10464.
11) Stemmler, K.; Vlasenko, A.; Guimbaud, C.; Ammann, M. Atmos.
Chem. Phys. 2008, 8, 5127−5141.
12) Cheng, J.; Psillakis, E.; Hoffmann, M. R.; Colussi, A. J. J. Phys.
Chem. A 2009, 113, 8152−8156.
13) Olsen, C. R.; Cutshall, N. H.; Larsen, I. L. Mar. Chem. 1982, 11,
01−533.
14) Ephralm, J.; Alegret, S.; Mathuthu, A.; Bicking, M.; Malcolm, R.
Geophys. Res. Lett. 2002, 29, 1101.
45) Keene, W. C.; Pszenny, A. A. P.; Maben, J. R.; Stevenson, E.;
Wall, A. J. Geophys. Res. 2004, 109, D23307.
2
(
1
(
(
(
(
5
(
L.; Marinsky, J. A. Environ. Sci. Technol. 1986, 20, 354−366.
(15) Hedges, J. I.; Oades, J. M. Org. Geochem. 1997, 27, 319−361.
(16) van Glasow, R.; Crutzen, P. J. Tropospheric Halogen Chemistry.
In The Atmosphere; Keeling, R. F., Ed.; Elsevier/Pergamon: Oxford,
2
003; Vol. 4, pp 24-64.
5
783
dx.doi.org/10.1021/jp2048234 | J. Phys. Chem. A 2012, 116, 5779−5783