Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
C O M M U N I C A T I O N S
Table 2. Electronic Transition Wavelengths (λ, nm) and Oscillator
Strengths (f) (TD-B3LYP/6-311+G(d)//B97D/6-311+G(d) with
CPCM18c Solvent Correction (Heptane)) for PhCCl and PhCCl/
TMB Complexes A and B
Acknowledgment. We are grateful to the National Science
Foundation and to the Petroleum Research Fund for financial
support.
λ(f)
PhCCl
A
B
Supporting Information Available: Figures S-1-S-11; Tables
S-1-S-4; spectra calibration; equilibrium constant calculations; opti-
mized geometries, absolute energies, electronic excitation energies, and
oscillator strengths for all relevant computed species; and complete
ref 16. This material is available free of charge via the Internet at http://
pubs.acs.org.
λ1(f1)
λ2(f2)
λ3(f3)
λ4(f4)
λ5(f5)
λ6(f6)
710(0.003)
336(0.037)
298(0.475)
278(0.000)
259(0.001)
237(0.010)
666(0.023)
503(0.004)
430(0.154)
322(0.155)
317(0.063)
289(0.005)
661(0.022)
507(0.001)
467(0.110)
336(0.040)
313(0.143)
291(0.127)
References
(1) (a) Tomioka, H.; Ozaki, Y.; Izawa, Y. Tetrahedron 1985, 41, 4987. (b)
Ruck, R. T.; Jones, M., Jr. Tetrahedron Lett. 1998, 39, 2277. (c) Moss,
R. A.; Yan, S.; Krogh-Jespersen, K. J. Am. Chem. Soc. 1998, 120, 1088.
(2) Krogh-Jespersen, K.; Yan, S.; Moss, R. A. J. Am. Chem. Soc. 1999, 121,
6269.
kcal/mol) become strongly dominated by the entropy term, and the
computed equilibrium constant (K ≈ 1) is consequently too small.
On the basis of the thermodynamic parameters presented in Table
1, we consider the significant absorption features in Figure 1 to
arise exclusively from absorption by PhCCl and π-complexes of
types A and B (Figure 2). The electronic transitions of lowest
energy computed for these species are listed in Table 2
(TD-B3LYP/6-311+G(d)//B97D/6-311+G(d)).18a,b PhCCl has a
weak, broad σ f p absorption near 600 nm and a very intense
π(Ph) f p charge-transfer absorption around 310 nm; TMB is
spectroscopically silent above ca. 300 nm. Strong absorptions are
computed for π-complexes A and B at 430 (f ) 0.15) and 467 nm
(f ) 0.11), respectively, and we assign the absorption observed
around 480 nm (Figure 1) to these species with confidence.
Absorption from complexes A and B is mixed in with PhCCl
absorption at longer wavelengths (>600 nm), as well as in the strong
absorption peaking at 324 nm. The UV-vis excitations in com-
plexes A and B originate in the π-system of DMB and terminate
in the predominantly empty carbenic p orbital LUMO of PhCCl,
and therefore they exhibit significant charge-transfer character. We
note that the average of the f values for the A and B bands around
450 nm ((0.154 + 0.110)/2 ) 0.132) and also the f value for PhCCl
absorption computed at 298 nm (f ) 0.475) are used in the
numerical evaluation of the equilibrium constant for carbene
complex formation (see the Supporting Information for details).
(3) Kahn, M. I.; Goodman, J. L. J. Am. Chem. Soc. 1995, 117, 6635.
(4) Tippman, E. M.; Platz, M. S.; Svir, I. B.; Klymenko, O. V. J. Am. Chem.
Soc. 2004, 126, 5750.
(5) Moss, R. A.; Tian, J.; Sauers, R. R.; Krogh-Jespersen, K. J. Am. Chem.
Soc. 2007, 129, 10019.
(6) Moss, R. A.; Wang, L.; Weintraub, E.; Krogh-Jespersen, K. J. Phys. Chem.
A 2008, 112, 4651.
(7) Moss, R. A.; Wang, L.; Odorisio, C. M.; Krogh-Jespersen, K. J. Phys.
Chem. A 2010, 114, 209.
(8) Moss, R. A.; Wang, L.; Odorisio, C. M.; Krogh-Jespersen, K. Tetrahedron
Lett. 2010, 51, 1467.
(9) Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396. Phenylchlorodiazirine
has maxima at 369, 384, and 389 nm; it was used with A369 ≈ 0.5.
(10) Turro, N. J.; Butcher, J. A., Jr.; Moss, R. A.; Guo, W.; Munjal, R. C.;
Fedorynski, M. J. Am. Chem. Soc. 1980, 102, 7576.
(11) Pliego, J. R., Jr.; De Almeida, W. B.; Celebi, S.; Zhu, Z.; Platz, M. S. J.
Phys. Chem. A 1999, 103, 7481.
(12) The intensities of the “raw” UV-vis absorptions are corrected for
wavelength-dependent variations in sample absorptivity, xenon monitoring
lamp emission, and detector sensitivity from 244 to 804 nm. For details,
see Figure S-1 and the discussion in the Supporting Information.
(13) K ) (1/slope)(f3/f1), where f3 (0.475) is the computed oscillator strength of
PhCCl at 324 nm and f1 (0.132) is the (average) computed oscillator strength
of PhCCl-TMB π-complexes A and B at 484 nm. See the Supporting
Information for details.
(14) (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996, 77, 3865.
(b) Grimme, S. J. Comput. Chem. 2006, 27, 1787. (c) Zhao, Y.; Truhlar,
D. G. J. Phys. Chem. A 2006, 110, 5121. (d) Chai, J.-D.; Head-Gordon,
M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
(15) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 721.
(b) Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209. (c) Krishnan,
R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
(d) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. (e)
Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R.
J. Comput. Chem. 1983, 4, 294.
In conclusion, experimental and computational studies indicate
that PhCCl, generated by LFP of phenylchlorodiazirine, forms
highly stable complexes with TMB in pentane. We have measured
the equilibrium constant, extracted the associated thermodynamic
parameters for this carbene-carbene complex system, and char-
acterized the complexes in detail by spectroscopic and computa-
tional analysis.
(16) All calculations made use of the Gaussian 09 program package: Frisch,
M. J.; et al. Gaussian 09, Revision A02; Gaussian, Inc.: Wallingford, CT,
2009.
(17) (a) Liu, B.; McLean, A. D. J. Chem. Phys. 1973, 59, 4557. (b) Boys, S. F.;
Bernardi, F. Mol. Phys. 1970, 19, 553.
(18) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5468. (b) Lee, C.; Yang, W.;
Parr, R. G. Phys. ReV. B 1988, 37, 785. (c) Barone, V.; Cossi, M. J. Phys.
Chem. A 1998, 102, 1995.
JA104514H
9
J. AM. CHEM. SOC. VOL. 132, NO. 31, 2010 10679