10.1002/anie.201904595
Angewandte Chemie International Edition
COMMUNICATION
Am. Chem. Soc. 2017, 139, 11413-11420; j) Y. Zhang, R. Ma, X. V.
Zhen, Y. C. Kudva, P. Buhlmann, S. J. Koester, ACS Appl. Mater.
Interfaces 2017, 9, 38863-38869; k) X. J. Wang, Y. X. Wang, L. H.
Feng, Sens. Actuators B Chem. 2019, 285, 625-630.
derivatives may be able to overcome (a) the lack of selectivity in
synthetic small-molecule glucose-sensing methods and (b) the
lack of stability in enzymatic glucose-sensing methods. The non-
enzymatic, non-optical, non-electrochemical glucose-sensing
strategy reported here may also ultimately be used to develop
cheaper, more stable, and more quantitative CGMs for health
monitoring. Surface immobilization of DBA2+ may also be
envisioned to benefit ongoing approaches that require both
selectivity to glucose and charge changing ability at
physiological condition.[15]
[6]
a) F. Horkay, S. H. Cho, P. Tathireddy, L. Rieth, F. Solzbacher, J.
Magda, Sens. Actuators B Chem. 2011, 160, 1363-1371; b) J. Y.
Shang, J. Yan, Z. X. Zhang, X. Huang, P. Maturavongsadit, B. Song, Y.
Jia, T. Y. Ma, D. C. Li, K. X. Xu, Q. Wang, Q. Lin, Sens. Actuators B
Chem. 2016, 237, 992-998; c) G. K. Samoei, W. H. Wang, J. O.
Escobedo, X. Y. Xu, H. J. Schneider, R. L. Cook, R. M. Strongin,
Angew. Chem. Int. Ed. 2006, 45, 5319-5322; Angew. Chem. 2006, 118,
5445–5448; d) G. Lin, S. Chang, H. Hao, P. Tathireddy, M. Orthner, J.
Magda, F. Solzbacher, Sens. Actuators B Chem. 2010, 144, 332-336; e)
Y. Liu, C. M. Deng, L. Tang, A. J. Qin, R. R. Hu, J. Z. Sun, B. Z. Tang, J.
Am. Chem. Soc. 2011, 133, 660-663; f) Y. J. Huang, W. J. Ouyang, X.
Wu, Z. Li, J. S. Fossey, T. D. James, Y. B. Jiang, J. Am. Chem. Soc.
2013, 135, 1700-1703.
Acknowledgements
This work was supported by grant 1-17-VSN-18 from the
American Diabetes Association. The authors acknowledge the
use of the Biological Nanostructures Laboratory within the
California Nano Systems Institute, supported by UCSB and UC
Office of the President.
[7]
a) S. Arimori, M. L. Bell, C. S. Oh, T. D. James, Org. Lett. 2002, 4,
4249-4251; b) T. D. James, K. R. A. S. Sandanayake, S. Shinkai,
Angew. Chem. Int. Ed. 1994, 33, 2207-2209; Angew. Chem. 1994, 106,
2287–2289; c) H. Shibata, Y. J. Heo, T. Okitsu, Y. Matsunaga, T.
Kawanishi, S. Takeuchi, Proc. Nat. Acad. Sci. U.S.A. 2010, 107, 17894-
17898; d) M. D. Phillips, T. M. Fyles, N. P. Barwell, T. D. James, Chem.
Commun. 2009, 6557-6559; e) W. Yang, H. He, D. G. Drueckhammer,
Angew. Chem. Int. Ed. 2001, 40, 1714-1718; Angew. Chem. 2001, 113,
1764–1768; f) H. Eggert, J. Frederiksen, C. Morin, J. C. Norrild, J. Org.
Chem. 1999, 64, 3846-3852; g) J. T. Suri, D. B. Cordes, F. E.
Cappuccio, R. A. Wessling, B. Singaram, Langmuir 2003, 19, 5145-
5152; h) B. Sharma, P. Bugga, L. R. Madison, A. I. Henry, M. G. Blaber,
N. G. Greeneltch, N. H. Chiang, M. Mrksich, G. C. Schatz, R. P. Van
Duyne, J. Am. Chem. Soc. 2016, 138, 13952-13959; i) W. L. Zhai, L.
Male, J. S. Fossey, Chem. Commun. 2017, 53, 2218-2221.
Keywords: • biosensors• diboronic acid • glucose monitoring •
non-enzymatic •synthesis design
[1]
a) Y. Zheng, S. H. Ley, F. B. Hu, Nat. Rev. Endocrinol. 2018, 14, 88-98;
b) P. H. Winocour, Diabetic Med. 2018, 35, 300-305; c) M. Brownlee,
Nature 2001, 414, 813-820.
[2]
[3]
a) D. Rodbard, Diabetes Technol. Ther. 2016, 18, 3-13; b) C. Chen, X.
L. Zhao, Z. H. Li, Z. G. Zhu, S. H. Qian, A. J. Flewitt, Sensors 2017, 17.
a) M. M. Rahman, A. J. S. Ahammad, J. H. Jin, S. J. Ahn, J. J. Lee,
Sensors 2010, 10, 4855-4886; b) K. Tian, M. Prestgard, A. Tiwari,
Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 100-118; c) K. Dhara, D.
R. Mahapatra, Microchim. Acta 2018, 185.
[8]
[9]
a) M. Mortellaro, A. DeHennis, Biosens. Bioelectron. 2014, 61, 227-231;
b) C. Lorenz, W. Sandoval, M. Mortellaro, Diabetes Technol. Ther.
2018, 20, 344-352.
T. D. James, K. R. A. S. Sandanayake, R. Iguchi, S. Shinkai, J. Am.
Chem. Soc. 1995, 117, 8982-8987.
[4]
[5]
a) X. Wu, Z. Li, X. X. Chen, J. S. Fossey, T. D. James, Y. B. Jiang,
Chem. Soc. Rev. 2013, 42, 8032-8048; b) X. L. Sun, T. D. James,
Chem. Rev. 2015, 115, 8001-8037; c) G. Q. Fang, H. Wang, Z. C. Bian,
J. Sun, A. Q. Liu, H. Fang, B. Liu, Q. Q. Yao, Z. Y. Wu, RSC Adv. 2018,
8, 29400-29427.
[10] a)J. Yan, G. Springsteen, S. Deeter, B. H. Wang, Tetrahedron 2004, 60,
11205-11209; b)J. N. Camara, J. T. Suri, F. E. Cappuccio, R. A.
Wessling, B. Singaram, Tetrahedron Lett. 2002, 43, 1139-1141.
[11] G. Springsteen, B. H. Wang, Tetrahedron 2002, 58, 5291-5300.
[12] F. H. Stootman, D. M. Fisher, A. Rodger, J. R. Aldrich-Wright, Analyst
2006, 131, 1145-1151.
a) B. Pappin, M. J. Kiefel, T. A. Houston, Carbohydrates
-
Comprehensive Studies on Glycobiology and Glycotechnology 2012,
37-54; b) S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I.
K. Lednev, C. S. Wilcox, D. N. Finegold, J. Am. Chem. Soc. 2003, 125,
3322-3329; c) E. Shoji, M. S. Freund, J. Am. Chem. Soc. 2001, 123,
3383-3384; d) N. Fortin, H. A. Klok, ACS Appl. Mater. Interfaces 2015,
7, 4631-4640; e) B. Peng, Y. Qin, Anal. Chem. 2008, 80, 6137-6141; f)
A. Matsumoto, H. Matsumoto, Y. Maeda, Y. Miyahara, Biochim.
Biophys. Acta, Gen. Subj. 2013, 1830, 4359-4364; g) M. B. Lerner, N.
Kybert, R. Mendoza, R. Villechenon, M. A. B. Lopez, A. T. C. Johnson,
Appl. Phys. Lett. 2013, 102; h) G. S. Chen, J. L. Qiu, J. Q. Xu, X. A.
Fang, Y. Liu, S. Q. Liu, S. B. Wei, R. F. Jiang, T. G. Luan, F. Zeng, F.
Zhu, G. F. Ouyang, Chem. Sci. 2016, 7, 1487-1495; i) J. Axthelm, S. H.
C. Askes, M. Elstner, G. U. Reddy, H. Gorls, P. Bellstedt, A. Schiller, J.
[13] F. H. Arnold, W. G. Zheng, A. S. Michaels, J. Membr. Sci. 2000, 167,
227-239.
[14] a) A. Tura, S. Sbrignadello, S. Barison, S. Conti, G. Pacini, Biophys.
Chem. 2007, 129, 235–241; b) R. Z. Sabirov, O. V. Krasilnikov, V. I.
Ternovsky, P. G. Merzliak, Gen. Physiol. Biophys. 1993, 12, 95—111.
[15] a) S. Wustoni, A. Savva, R. Sun, E. Bihar, S. Inal, Adv. Mater.
b) C. M. Daikuzono, C. Delaney, H. Tesfay, L. Florea, O. N. Oliveira, Jr.,
A. Morrin, D. Diamond, Analyst, 2017, 142, 1133-1139.
This article is protected by copyright. All rights reserved.