161.7, 140.2, 139.2, 113.4 (5 C); 133.5, 130.7, 129.7, 127.7, 126.2,
125.6, 124.7, 122.6, 81.8, 81.7 (10 CH); 38.6 (CH2).
2 (a) U. Matteolli, V. Beghetto and A. Scrivanti, J. Mol. Catal. A: Chem.,
1996, 109, 45; (b) W.-Y. Wong and W.-T. Wong, J. Chem. Soc., Dalton
Trans., 1995, 17, 2831; (c) G. Predieri, A. Tiripicchio, C. Vignali and E.
Sappa, J. Organomet. Chem., 1988, 342, C33; (d) J. Collin, C. Jossart and
G. Balavoine, Organometallics, 1986, 5, 203; (e) R. Mutin, W. Abboud,
J. M. Basset and D. Sinou, J. Mol. Catal., 1985, 33, 47.
Hydrogen transfer reactions
All reactions were carried out in Schlenk tubes under nitrogen, us-
ing magnetic stirrers and thermostated oil baths. Isopropanol was
used as solvent. Acetophenone was distilled under nitrogen prior
to use. In a typical experiment, the metal complex (0.025 mmol),
KOH (0.1 mmol, solution 0.34 M in isopropanol) and 20 mL of
isopropanol were introduced in a Schlenk tube and the mixture
was heated to reflux temperature. After 10 min, acetophenone
(5 mmol) was added. Conversions and enantiomeric excesses were
determined by GC, using a chiral GAMMA-DEX fused-silica cap-
illary column (0.25 mm id) and p-xylene as the internal standard.
3 P. Homanen, R. Persson, M. Haukka, T. A. Pakkanen and E.
Nordlander, Organometallics, 2000, 19, 5568.
4 U. Mateolli, M. Bianchi, P. Frediani, G. Menchi, C. Botteghi and M.
Marchetti, J. Organomet. Chem., 1984, 263, 243.
5 F. Piacenti, P. Frediani, U. Mateolli, G. Menchi and M. Bianchi, Chim.
Ind. (Milan), 1986, 68, 53.
6 J. A. Cabeza, I. del Rıo, S. Garcıa-Granda, V. Riera and M. G. Sanchez-
´
´
´
Vega, Eur. J. Inorg. Chem., 2002, 2561.
7 J. A. Cabeza, I. da Silva, I. del R´ıo, S. Garc´ıa-Granda, V. Riera and
M. G. Sa´nchez-Vega, Organometallics, 2003, 22, 1519.
8 For a review on the reactivity of triruthenium carbonyl clusters derived
from 2-aminopyridines, see: J. A. Cabeza, Eur. J. Inorg. Chem., 2002,
1559.
9 For recent articles uncovered by ref. 8, see: (a) J. A. Cabeza, I. del R´ıo,
S. Garc´ıa-Granda, V. Riera and M. Sua´rez, Organometallics, 2002, 21,
2540; (b) J. A. Cabeza, I. del R´ıo, S. Garc´ıa-Granda, V. Riera and M.
Sua´rez, Organometallics, 2002, 21, 5055; (c) J. A. Cabeza, I. del R´ıo, M.
Moreno, S. Garc´ıa-Granda, M. Pe´rez-Priede and V. Riera, Eur. J. Inorg.
Chem., 2002, 3204; (d) J. A. Cabeza, I. del R´ıo, S. Garc´ıa-Granda, L.
Mart´ınez-Me´ndez, M. Moreno and V. Riera, Organometallics, 2003,
22, 1164; (e) J. A. Cabeza, I. del R´ıo, V. Riera, M. Sua´rez and S.
Garc´ıa-Granda, Organometallics, 2004, 23, 1107.
10 J. A. Cabeza, in Metal Clusters in Chemistry, ed. P. Braunstein,
L. A. Oro and P. R. Raithby, Wiley-VCH: Weinheim, 1999,
p. 715.
11 For a review on alkyne hydrogenation mediated by 2-amidopyridine-
bridged triruthenium carbonyl cluster complexes, see: J. A. Cabeza,
J. M. Ferna´ndez-Colinas and A. Llamazares, Synlett, 1995, 579.
12 P. Nombel, N. Lugan, F. Mulla and G. Lavigne, Organometallics, 1994,
13, 4673.
13 P. Nombel, N. Lugan, B. Donnadieu and G. Lavigne, Organometallics,
1999, 18, 187.
14 For reviews on the chemistry of oxazoline ligands and their use in
asymmetric catalysis, see: (a) H. A. McManus and P. J. Guiry, Chem.
Rev., 2004, 104, 4151; (b) M. Go´mez, G. Muller and M. Rocamora,
Coord. Chem. Rev., 1999, 193–195, 769; (c) A. I. Meyers, J. Heterocycl.
Chem., 1998, 35, 991.
15 For reviews on the use of bis(oxazoline) ligands in asymmetric
catalysis, see: (a) D. Rechavi and M. Lemaire, Chem. Rev., 2002, 102,
3467; (b) A. K. Ghosh, P. Mthivanan and J. Cappiello, Tetrahedron:
Asymmetry, 1998, 9, 1.
16 A. Decken, R. A. Gossage and P. N. Yadav, Can. J. Chem., 2005, 83,
1185.
Asymmetric Diels–Alder reactions
Reactions were carried out using dichloromethane as solvent. Cy-
clopentadiene was freshly obtained from its dimer by distillation.
Acroleine was distilled under nitrogen prior to use. In a typical
experiment, the metal complex (0.025 mmol), cyclopentadiene
(3 mmol, dissolved in 2 mL of dichloromethane), acroleine
(0.5 mmol, dissolved in 2 mL of dichloromethane), Me3NO
(0.025 mmol) and 10 mL of dichloromethane were placed into
a Schlenk tube and the mixture was stirred in a thermostated
bath. Conversion data, the endo : exo ratio and the enantiomeric
excesses were determined by GC using a chiral GAMMA-DEX
fused-silica capillary column (0.25 mm id) and p-xylene as the
internal standard.
X-Ray crystallography
A selection of crystal, measurement and refinement data for
compounds 1–3 is collected in Table 4. Diffraction data were
measured at room temperature on a Bruker AXS SMART 1000
diffractometer, using graphite-monochromated Mo Ka radia-
tion. Semi-empirical absorption corrections were applied with
SADABS.24 Structures were solved by direct methods and refined
by full matrix least-squares against F2 with SHELXTL.25 All non-
hydrogen atoms were refined anisotropically. All hydrogen atoms
were set in calculated positions and refined as riding atoms. The
molecular plots were made with the PLATON program package.26
The WINGX program system27 was used throughout the structure
determinations.
17 P. L. Andreu, J. A. Cabeza, V. Riera, Y. Jeannin and D. Miguel, J. Chem.
Soc., Dalton Trans., 1990, 2201.
18 (a) A. Aranyos, G. Csjernyik, K. J. Szabo´ and J. E. Ba¨ckvall, Chem.
Commun., 1999, 351; (b) O. Pa`mies and J. E. Ba¨ckvall, Chem. Eur. J.,
2001, 7, 5052; (c) J. E. Ba¨ckvall, J. Organomet. Chem., 2002, 652,
105.
19 See, for example: (a) W. Schatz, H. P. Neumann, B. Nuber, B.
Kanellakopolus and M. L. Ziegler, Chem. Ber., 1991, 124, 453; (b) J. A.
Cabeza, I. del R´ıo, V. Riera and F. Grepioni, Organometallics, 1995,
14, 3124.
CCDC reference numbers 293020–293022.
For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b517758h
20 J. A. Cabeza, J. M. Ferna´ndez-Colinas, A. Llamazares, V. Riera, S.
Garc´ıa-Granda and J. F. van der Maelen, Organometallics, 1994, 13,
4352.
Acknowledgements
21 J. A. Cabeza, J. M. Ferna´ndez-Colinas, A. Llamazares and V. Riera,
Organometallics, 1992, 11, 4355.
22 G. I. Poos, J. R. Carson, J. D. Rosenau, A. P. Roszkowski, N. M. Kelley
and J. McGowin, J. Med. Chem., 1963, 6, 266.
23 K. M. Button and R. A. Gossage, J. Heterocycl. Chem., 2003, 40, 513.
24 G. M. Sheldrick, SADABS, Empirical Absorption Correction Program,
University of Go¨ttingen, Go¨ttingen, Germany, 1997.
25 G. M. Sheldrick, SHELXTL, An Integrated System for Solving,
Refining, and Displaying Crystal Structures from Diffraction Data,
Version 5.1, Bruker AXS Inc., Madison, WI, 1998.
This work was supported by the Spanish MEC-MCyT research
projects BQU2002-2623 (to J.A.C.) and BQU2002-3414 (to D.M.)
and by the Natural Sciences and Engineering Research Council of
Canada (NSERC, research project to R.A.G.).
References
1 (a) R. Noyori, Angew. Chem., Int. Ed., 2002, 41, 2008; (b) R. Noyori,
Catalytic Asymmetric Synthesis, ed. I. Ojima, Wiley-VCH, Weinheim,
2nd edn, 2000; (c) R. Noyori, Comprehensive Asymmetric Catalysis, ed.
E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer, NY, 1999.
26 A. L. Spek, in Computational Crystallography, ed. D. Sayre, Clarendon
Press, Oxford, 1982, p. 528.
27 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
This journal is
The Royal Society of Chemistry 2006
Dalton Trans., 2006, 2450–2455 | 2455
©