E
T. Cui et al.
Letter
Synlett
tron transfer to form the cation intermediate D. Finally,
deprotonation of cation D gives the desired product 3a.
In summary, we have developed a protocol for the elec-
trochemical oxidative C–H thiocyanation or selenocyana-
tion of imidazopyridines and electron-rich arenes.27 Cheap
and readily available NH4SCN and KSeCN are used as sourc-
es of SCN and SeCN, respectively. A broad scope of sub-
strates and a variety of functional groups are well tolerated
to give the thiocyanated or selenocyanated products in
moderate to excellent yields. This convenient method for
the synthesis of thiocyanated imidazopyridines might be
applicable in the field of pharmaceutical synthesis.
(13) Song, X.-F.; Ye, A.-H.; Xie, Y.-Y.; Dong, J.-W.; Chen, C.; Zhang, Y.;
Chen, Z.-M. Org. Lett. 2019, 21, 9550.
(14) Modi, A.; Ali, W.; Patel, B. K. Org. Lett. 2017, 19, 432.
(15) Tao, Z.-K.; Li, C.-K.; Zhang, P.-Z.; Shoberu, A.; Zou, J.-P.; Zhang,
W. J. Org. Chem. 2018, 83, 2418.
(16) For selected examples, please see: (a) Chen, Y.; Wang, S.; Jiang,
Q.; Cheng, C.; Xiao, X.; Zhu, G. J. Org. Chem. 2018, 83, 716.
(b) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang,
Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683. (c) Yuan, P.-F.;
Zhang, Q.-B.; Jin, X.-L.; Lei, W.-L.; Wu, L.-Z.; Liu, Q. Green Chem.
2018, 20, 5464. (d) Gao, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2019,
84, 2243. (e) Li, G.; Yan, Q.; Gong, X.; Dou, X.; Yang, D. ACS Sus-
tainable Chem. Eng. 2019, 7, 14009. (f) Koohgard, M.;
Hosseinpour, Z.; Sarvestani, A. M.; Hosseini-Sarvari, M. Catal.
Sci. Technol. 2020, 10, 1401.
(17) (a) Nair, V.; George, T. G.; Nair, L. G.; Panicker, S. B. Tetrahedron
Lett. 1999, 40, 1195. (b) Wu, G.; Liu, Q.; Shen, Y.; Wu, W.; Wu, L.
Tetrahedron Lett. 2005, 46, 5831. (c) Iranpoor, N.; Firouzabadi,
H.; Nowrouzi, N. Tetrahedron 2006, 62, 5498. (d) Pan, X.-Q.; Lei,
M.-Y.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2009, 50, 347.
(e) Zhang, X.-Z.; Ge, D.-L.; Chen, S.-Y.; Yu, X.-Q. RSC Adv. 2016, 6,
66320. (f) Dey, A.; Hajra, A. Adv. Synth. Catal. 2019, 361, 842.
(g) Lu, L.-H.; Zhou, S.-J.; Sun, M.; Chen, J.-L.; Xia, W.; Yu, X.; Xu,
X.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 1574.
(18) (a) Yadav, J. S.; Reddy, B. V. S.; Shubashree, S.; Sadashiv, K. Tetra-
hedron Lett. 2004, 45, 2951. (b) Yadav, J. S.; Reddy, B. V. S.;
Reddy, Y. J. Chem. Lett. 2008, 37, 652. (c) Chen, Q.; Lei, Y.; Wang,
Y.; Wang, C.; Wang, Y.; Xu, Z.; Wang, H.; Wang, R. Org. Chem.
Front. 2017, 4, 369.
Funding Information
This work was supported by the National Natural Science Foundation
of China (Project 21672104, 21502097) and the Priority Academic
Program Development of Jiangsu Higher Education Institutions.Natio
n
alNaturalScienceFo
u
n
d
ati
o
n
o
f
C
h
i
na(2
1
6
7
2
1
0
4)Natio
n
alNaturalScie
n
ceFo
u
n
dati
o
n
o
f
C
h
ina(2
1
5
0
2
0
9
7)PriorityAca
d
e
m
icProgramDe
v
el
o
p
m
ent
o
f
Jiangsu
H
ig
h
er
E
d
u
cationInstiuttions()
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortingInformationS
u
p
p
ortingInformatio
n
References and Notes
(19) For selected reviews, see: (a) Enguehard-Gueiffier, C.; Gueiffier,
A. Mini-Rev. Med. Chem. 2007, 7, 888. (b) Bagdi, A. K.; Santra, S.;
Monir, K.; Hajra, A. Chem. Commun. 2015, 51, 1555.
(1) DeCollo, T. V.; Lees, W. J. J. Org. Chem. 2001, 66, 4244.
(2) (a) Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011,
13, 454. (b) Bayarmagnai, B.; Matheis, C.; Jouvin, K.; Goossen, L.
J. Angew. Chem. Int. Ed. 2015, 54, 5753. (c) Jouvin, K.; Matheis,
C.; Goossen, L. J. Chem. Eur. J. 2015, 21, 14324.
(3) (a) Kamiya, I.; Kawakami, J.-I.; Yano, S.; Nomoto, A.; Ogawa, A.
Organometallics 2006, 25, 3562. (b) Zhang, Y.; Wu, D.; Weng, Z.
Org. Chem. Front. 2017, 4, 2226.
(20) For selected reviews, see: (a) Tashrifi, Z.; Mohammadi-Khanap-
oshtani, M.; Larijani, B.; Mahdavi, M. Eur. J. Org. Chem. 2020,
269. (b) Bagdi, A. K.; Hajra, A. Org. Biomol. Chem. 2020, 18, 2611.
(21) (a) Mitra, S.; Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2015,
80, 8275. (b) Yang, D.; Yan, K.; Wei, W.; Li, G.; Lu, S.; Zhao, C.;
Tian, L.; Wang, H. J. Org. Chem. 2015, 80, 11073. (c) Zhang, H.;
Wei, Q.; Wei, S.; Qu, J.; Wang, B. Eur. J. Org. Chem. 2016, 3373.
(d) Zhu, Y.-S.; Xue, Y.; Liu, W.; Zhu, X.; Hao, X.-Q.; Song, M.-P.
J. Org. Chem. 2020, 85, 9106.
(4) (a) Sengupta, D.; Basu, B. Tetrahedron Lett. 2013, 54, 2277.
(b) Maurya, C. K.; Mazumder, A.; Kumar, A.; Gupta, P. K. Synlett
2016, 27, 409.
(5) Renard, P.-Y.; Schwebel, H.; Vayron, P.; Josien, L.; Valleix, A.;
Mioskowski, C. Chem. Eur. J. 2002, 8, 2910.
(6) (a) Vorona, S.; Artamonova, T.; Zevatskii, Y.; Myznikov, L. Syn-
thesis 2014, 46, 781. (b) Song, W.; Li, M.; Dong, K.; Zheng, Y. Adv.
Synth. Catal. 2019, 361, 5258.
(7) (a) Patil, A. D.; Freyer, A. J.; Reichwein, R.; Carte, B.; Killmer, L.
B.; Faucette, L.; Johnson, R. K.; Faulkner, D. J. Tetrahedron Lett.
1997, 38, 363. (b) Yasman, Y.; Edrada, R. A.; Wray, V.; Proksch, P.
J. Nat. Prod. 2003, 66, 1512. (c) Dutta, S.; Abe, H.; Aoyagi, S.;
Kibayashi, C.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 15004.
(8) Ciszek, J. W.; Stewart, M. P.; Tour, J. M. J. Am. Chem. Soc. 2004,
126, 13172.
(22) For selected reviews, see: (a) Francke, R.; Little, R. D. Chem. Soc.
Rev. 2014, 43, 2492. (b) Yan, M.; Kawamata, Y.; Baran, P. S. Chem.
Rev. 2017, 117, 13230. (c) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4,
27. (d) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
(e) Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.; Lei, A. Chem. Rev.
2019, 119, 6769.
(23) (a) Yu, Y.; Yuan, Y.; Liu, H.; He, M.; Yang, M.; Liu, P.; Yu, B.; Dong,
X.; Lei, A. Chem. Commun. 2019, 55, 1809. (b) Yuan, Y.; Qiao, J.;
Cao, Y.; Tang, J.; Wang, M.; Ke, G.; Lu, Y.; Liu, X.; Lei, A. Chem.
Commun. 2019, 55, 4230. (c) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.;
Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49.
(d) Zhou, Z.; Yuan, Y.; Cao, Y.; Qiao, J.; Yao, A.; Zhao, J.; Zuo, W.;
Chen, W.; Lei, A. Chin. J. Chem. 2019, 37, 611. (e) Wen, J.; Niu, C.;
Yan, K.; Cheng, X.; Gong, R.; Li, M.; Guo, Y.; Yang, J.; Wang, H.
Green Chem. 2020, 22, 1129. (f) Kim, Y. J.; Kim, D. Y. Tetrahedron
Lett. 2019, 60, 739. (g) Zhang, J.; Wang, H.; Chen, Y.; Xie, H.;
Ding, C.; Tan, J.; Xu, K. Chin. Chem. Lett. 2020, 31, 1576.
(24) (a) Liang, S.; Zeng, C.-C.; Tian, H.-Y.; Sun, B.-G.; Luo, X.-G.; Ren,
F.-Z. Adv. Synth. Catal. 2018, 360, 1444. (b) Wen, J.; Zhang, L.;
Yang, X.; Niu, C.; Wang, S.; Wei, W.; Sun, X.; Yang, J.; Wang, H.
Green Chem. 2019, 21, 3597.
(9) For a selected review, see: Castanheiro, T.; Suffert, J.; Donnard,
M.; Gulea, M. Chem. Soc. Rev. 2016, 45, 494.
(10) (a) Qiu, J.; Wu, D.; Karmaker, P. G.; Yin, H.; Chen, F.-X. Org. Lett.
2018, 20, 1600. (b) See, J. Y.; Zhao, Y. Org. Lett. 2018, 20, 7433.
(11) Kadam, S. N.; Ambhore, A. N.; Hebade, M. J.; Kamble, R. D.; Hese,
S. V.; Gaikwad, M. V.; Gavhane, P. D.; Dawane, B. S. Synlett 2018,
29, 1902.
(12) (a) Wu, D.; Qiu, J.; Karmaker, P. G.; Yin, H.; Chen, F.-X. J. Org.
Chem. 2018, 83, 1576. (b) Wei, W.; Liao, L.; Qin, T.; Zhao, X. Org.
Lett. 2019, 21, 7846.
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–F