G. Ulrich et al. / Tetrahedron Letters 42 (2001) 6113–6115
6115
Functionalization of the methyl groups of our oligopy-
References
ridine-esters (4a, 4b, 7 and 9) was achieved by a radical
bromination. This method appears to be appropriate in
the present case due to the presence of an ester group
on the molecules. To increase the yield and the selectiv-
1. (a) Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Coord. Chem.
Rev. 1993, 123, 201–228; (b) Piguet, C.; B u¨ nzli, J.-C. G.
Chem. Soc. Rev. 1999, 28, 347–358; (c) Sammes, P. G.;
Yahioglu, G. Nat. Prod. Rep. 1996, 13, 1–28.
2. B u¨ nzli, J.-C. G.; Charbonni e` re, L. J.; Ziessel, R. J. Chem.
Soc., Dalton Trans. 2000, 1917–1923.
1
4
ity of the radical bromination we used NBS, benzene
as solvent and a catalytic amount of AIBN, at reflux
and under irradiation (halogen-lamp 150 W). Benzene
appeared to a better solvent for the mono-bromination
of the benzylic methyl group than the classical CCl4
solvent. Purification of the resulting benzylic bromides
3. Charbonni e` re, L. J.; Weibel, N.; Ziessel, R. F. Tetrahedron
Lett. 2001, 42, 659–662.
4. Charbonni e` re, L. J.; Ziessel, R.; Guardigli, M.; Roda, A.;
Sabbatini, N.; Cesario, M. J. Am. Chem. Soc. 2001, 123,
2436–2437.
5. El-ghayouri, A.; Ziessel, R. J. Org. Chem. 2000, 65,
7757–7763.
6. Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508–524.
7. (a) Lehmann, U.; Henze, O.; Schl u¨ ter, A. D. Chem. Eur.
J. 1999, 5, 854–859; (b) Schubert, U. S.; Eschbaumer, C.;
Hochwimmer, G. Synthesis 1999, 779–782; (c) Schubert, U.
S.; Eschbaumer, C.; Weidl, C. H. Synlett 1999, 342–344.
8. Hanan, G. S.; Schubert, U. S.; Volkmer, D.; Rivi e` re, E.;
Lehn, J.-M.; Kyritsakas, N.; Fischer, J. Can. J. Chem.
1997, 75, 169–182.
§
is thereby facilitated. In the case of 5b, a high yield for
the radical bromination reaction was obtained by the
use of bromine and a biphasic mixture of water and
benzene, under irradiation. This method appeared to be
very selective; a small amount of a-dibromomethyl
derivative is formed (less than 5%). Improvement of the
synthesis of bromomethyl oligopyridine derivatives is
1
5
currently under investigation.
In conclusion, a convenient synthesis of NNCOO–tri-
dentate ligand precursors was developed. These com-
pounds bearing benzylic bromide function on the
opposite side of the molecule could be easily attached
to various molecular platforms, such as macrocyclic
polyamines, calixarenes or sugars, to create specific
coordination cavities for target metallic ions.
9. Adams, R.; Miyano, S. J. Am. Chem. Soc. 1954, 76,
3168–3171.
10. Windscheif, P.-M.; V o¨ gtle, F. Synthesis 1994, 87–92.
11. Funeriu, D. P.; Lehn, J.-M.; Baum, G.; Fenske, D. Chem.
Eur. J. 1997, 3, 99–104.
12. Levelt, W. H.; Wibault, J. P. Recl. Trav. Chim. Pays Bas
Acknowledgements
1929, 48, 466–473.
1
1
3. Wang, G.; Bergstrom, D. E. Synlett 1992, 422–424.
4. (a) Offermann, W.; V o¨ gtle, F. Synthesis 1977, 272–273; (b)
Offermann, W.; V o¨ gtle, F. Angew. Chem., Int. Ed. Engl.
1980, 19, 464–465.
The authors are grateful to the CNRS for its financial
supports and to Ms. C. Zedde for analytical and
preparative HPLC facilities.
15. Bedel, S.; Ulrich, G.; Picard, C. Results to be published.
.
§
[
1
Ethyl 5%-bromomethyl-2,2%-bipyridine-6-carboxylate (5b): mp=106–
1
3
07°C. H NMR (200 MHz, CDCl ): l=1.46 (t, 3H, J=7.1 Hz),
3
.48 (q, 2H, 3J=7.1 Hz), 4.53 (s, 2H), 7.86 (dd, 1H, J=8.2 Hz
3
4
4
3
3
J=2.3 Hz), 7.94 (t, 1H, J=7.8 Hz), 8.12 (dd, 1H, J=7.7 Hz
4
4
13
J=1.2 Hz), 8.56 (m, 2H), 8.66 (d, 1H, J=2.3 Hz). C NMR (50
MHz, CDCl ): l=14.4 (CH ), 29.6 (CH Br), 61.9 (CH O), 121.7
3
3
2
2
(CH), 124.3 (CH), 125.2 (CH), 134.2 (Cq), 137.7 (CH), 137.9 (CH),
1
47.9 (Cq), 149.3 (CH), 155.2 (Cq), 155.8 (Cq), 136.3 (CꢀO).
−
1
−1
+
IR(KBr pellets, cm ): w=1738 (w ), 1589, 1557 cm . MS (FAB ,
mNBA): m/z=321/323 (M+H ), 343/345 (M+Na ). Anal. calcd for
CꢀO
+
+
C14H13BrN O : C, 52.36; H, 4.08; N, 8.72; found C, 52.18; H, 4.03;
2
2
N, 8.62].