2
044
T. Ogata et al. / Tetrahedron Letters 44 (2003) 2041–2044
Table 2. Reactions of naphthols with SnCl in the absence
product, while the reaction of 4a with SC gave DNF 8a
in high yield. The SC-mediated oxidative reactions of
4
of O2a
NAP in the presence or absence of O made it possible
to control the synthesis in the direction of either the
BNAPQ or the DNF framework.
2
Entry
Naphthol
Solvent
Time
Product (yieldb)
10
8
1
2
3
4a
4a
4a
4c
4d
4d
4d
5a
5c
5d
9d
9e
MeNO2
CH Cl
0.8
56
96
65
65
4.3
15
2
63
7
1.5
1
60
92
14
84
–
–
–
–
References
2
2
2
2
2
c
CH Cl
2
4
5
CH Cl
1. (a) Bringmann, G.; Walter, R.; Weirich, R. Angew.
Chem., Int. Ed. Engl. 1990, 29, 977–991; (b) Cameron, D.
W.; Feutrill, G. I.; Pannan, L. J. H. Tetrahedron Lett.
1980, 21, 1385–1386; (c) Hirakawa, K.; Ogiue, E.;
Motoyoshiya, J.; Yajima, M. Phytochemistry 1986, 25,
2
CH Cl
No reaction
2
d
6
MeNO2
MeNO2
8
Trace
98
91
29
–
–
e
7
9
8
9
1
1
1
CH Cl
–
–
–
82
80
2
2
CH Cl
2
2
1
494–1495; (d) Sankaram, A. V. B.; Reddy, V. V. N.;
Marthandamurthi, M. Phytochemistry 1986, 25, 2867–
871; (e) Higa, M.; Ogihara, K.; Yogi, S. Chem. Pharm.
0f
1
2
MeNO2
MeNO2
MeNO2
2
–
Bull. 1998, 46, 1189–1193; (f) Ishiguro, K.; Ohira, Y.;
Oku, H. J. Nat. Prod. 1998, 61, 1126–1129; (g) Bring-
mann, G.; Tasler, S. Tetrahedron 2001, 57, 331–343.
2. (a) Yamato, T.; Hideshima, C.; Prakash, G. K. S.; Olah,
G. A. J. Org. Chem. 1991, 56, 3192–3194; (b) Arienti, A.;
Bigi, F.; Maggi, R.; Moggi, P.; Rastelli, M.; Sartori, G.;
Trer e´ , A. J. Chem. Soc., Perkin Trans. 1 1997, 1391–1393.
a
General procedure: the reactions were carried out using SnCl4 (1.3
equiv.) with a stirring in argon-saturated solvent at 100°C under
normal laboratory light in a sealed tube. Similar results were
obtained in the dark.
Isolated yield (%).
Similar reaction with SnCl4 (0.25 equiv.) gave 8a along with 5a
b
c
(59%).
3
. (a) Jempty, T. C.; Gogins, K. A. Z.; Miller, L. L. J. Org.
Chem. 1981, 46, 4545–4551; (b) Poutsma, M. L.; Dyer, C.
W. J. Org. Chem. 1982, 47, 3367–3377; (c) Tanoue, Y.;
Sakata, K.; Hashimoto, M.; Morishita, S.; Hamada, M.;
Kai, N.; Nagai, T. Tetrahedron 2002, 58, 99–104.
d
5
d was also obtained in 16% yield along with the recovered 4d
(24%).
e
f
Disappearance of 4d was observed.
d (14%) was recovered and polymer was formed.
5
4. (a) Sato, T.; Wakahara, Y.; Otera, J.; Nozaki, H.;
Fukuzumi, S. J. Am. Chem. Soc. 1991, 113, 4028–4030;
(
b) Barton, D. H. R.; Haynes, R. K.; Magnus, P. D.;
Menzies, I. D. J. Chem. Soc., Chem. Commun. 1974,
11–512.
5
5
6
7
. Okamoto, I.; Doi, H.; Kotani, E.; Takeya, T. Tetra-
hedron Lett. 2001, 42, 2987–2989.
. Brimble, M. A.; Brenstrum, T. J. J. Chem. Soc., Perkin
Trans. 1 2001, 1624–1634.
. (a) Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hashi-
moto, S. J. Org. Chem. 1999, 64, 2264–2271; (b) Hwang,
D.-R.; Chen, C.-P.; Uang, B.-J. J. Chem. Soc., Chem.
Commun. 1999, 1207–1208; (c) Li, T.-S.; Duan, H.-Y.; Li,
B.-Z.; Tewari, B.-B.; Li, S.-H. J. Chem. Soc., Perkin
Trans. 1 1999, 291–293; (d) Hon, S.-W.; Li, C.-H.; Kuo,
J.-H.; Barhate, N. B.; Liu, Y.-H.; Wang, Y.; Chen, C.-T.
Org. Lett. 2001, 3, 869–872; (e) Doussot, J.; Guy, A.;
Ferroud, C. Tetrahedron Lett. 2000, 41, 2545–2547.
. (a) Fukuzumi, S.; Mochizuki, S.; Tanaka, T. Inorg.
Chem. 1989, 28, 2459–2465; (b) Andrieux, C. P.; Hapiot,
P.; Sav e´ ant, J.-M. J. Am. Chem. Soc. 1987, 109, 3768–
Scheme 3.
1
1
pathways involving the formation of H O (the naph-
2
thoxy radical-induced reaction), rather than nonradical
2
b
pathways
(the Lewis acid-promoted dehydration
pathway) because of the formation of polymeric com-
pounds (including 10) as described above (entries 6, 7
and 10). In this step, SC is inactivated by the resulting
8
H O. In the oxidative reaction with SC in the absence
2
of O , CH Cl and MeNO used as solvents also act as
2
2
2
2
12
one-electron and one-proton acceptors from the anion
3
775.
radical species (SC-·) and NAP, playing the same role
9
. Cofr e´ , P.; Sawyer, D. T. Anal. Chem. 1986, 58, 1057–
1061.
10. (a) Kunai, A.; Hata, S.; Ito, S.; Sasaki, K. J. Org. Chem.
1986, 51, 3471–3474; (b) Saito, I.; Kato, S.; Matsuura, T.
Tetrahedron Lett. 1970, 11, 239–242.
as that of O described above. The different reactivities
2
in CH Cl or MeNO may be based on the difference of
2
2
2
one-electron accepting ability from the anion radical
species (SC-·). Further investigation on the synthesis of
balsaminones A possessing the DNF framework is in
progress.
11. Wiater, I.; Born, J. G. P.; Louw, R. Eur. J. Org. Chem.
2000, 921–928.
1
2. (a) Bertran, J.; Gallardo, I.; Moreno, M.; Sav e´ ant, J.-M.
J. Am. Chem. Soc. 1992, 114, 9576–9583; (b) Prieto, F.;
Webster, R. D.; Alden, J. A.; Aixill, W. J.; Waller, G. A.;
Compton, R. G.; Rueda, M. J. Electroanal. Chem. 1997,
437, 183–189.
In conclusion, the above reactions of NAP 4 proceed
differently in the SC/O system and SC system. For
2
example, the reaction of 4a with the SC/O2 system
afforded BNAPQ 7a in good yield as the major