H. Jourdan et al. / Tetrahedron Letters 46 (2005) 8027–8031
8031
resulting from the use of chiral boronates. Work in that
direction is actively pursued.
Eur. J. Org. Chem. 2000, 3402–3410; (f) Magueur, G.;
Crousse, B.; Our e´ vitch, M.; Bonnet-Delpon, D.; B e´ gu e´ ,
J.-P. J. Org. Chem. 2003, 68, 9763–9766.
9
. The accelerating effect of HFIP as additive on the Petasis
reaction has been recently reported in the case of boronic
acid. See: Nanda, K. K.; Trotter, B. W. Tetrahedron Lett.
References and notes
2
005, 46, 2025–2028.
TM
1
2
3
. Zhu, J.; Bienaym e´ , H. Multicomponent Reactions; Wiley-
VCH: Weinheim, 2005.
. Bienaym e´ , H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem.
Eur. J. 2000, 6, 3321–3329.
. (a) Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett.
10. A Quest synthesizer was used. Details can be obtained
cal magnetic stirring.
11. All new compounds had analytical data in accordance
with the depicted structures.
1
993, 34, 583–586; (b) Harwood, L. M.; Currie, G. S.;
Drew, M. G. B.; Luke, R. W. A. Chem. Commun. 1996,
953–1954; (c) Petasis, N. A.; Zavialov, I. A. J. Am. Chem.
12. General procedure for products 5a–l. The requisite
boronic ester (0.5 mmol, 1 equiv) and aldehyde (0.5 mmol,
1 equiv) were dissolved in 1,1,1,3,3,3-hexafluropropan-2-ol
(0.5 mL), and the primary amine (0.5 mmol, 1 equiv) was
then added at room temperature to the resultant solution.
The mixture was stirred for 4 h at room temperature after
which period of time the solvent was evaporated. The
crude residue was purified either by flash chromatography
on silica and eluted with the appropriate eluant (5f: DCM/
MeOH (97:3)), or by crystallization from diethyl ether
(5a–e and 5i–l).
13. For the use of microwave activation of the Petasis reaction
conducted with boronic acids, see: (a) McLean, N. J.; Tye,
H.; Whittaker, M. Tetrahedron Lett. 2004, 45, 993–995; (b)
Follmann, M.; Graul, F.; Sch a¨ fer, T.; Kopec, S.; Hamley,
P. Synlett 2005, 1009–1011.
14. General, microwave-activated procedure for products 5m–
x. The starting boronic ester (0.5 mmol, 1 equiv) and
aldehyde (0.5 mmol, 1 equiv) were dissolved in methanol
(0.5 mL) in a 10 mL microwave vessel. The requisite amine
(0.5 mmol, 1 equiv) was then introduced to the resultant
stirring solution at room temperature. The tube was sealed
with a pressure cap and irradiated for 10 min at 120 °C
(300 W). After cooling to room temperature, the solvent
was evaporated. The crude residue was either purified by
flash chromatography on silica and eluted with the
appropriate eluant (5o–q and 5u: DCM/MeOH (98:2);
5v: cyclohexane/AcOEt (85:15)), or crystallized from
diethyl ether (5m,n,r–t,w and 5x).
1
Soc. 1997, 119, 445–446; (d) Petasis, N. A.; Goodman, A.;
Zavialov, I. A. Tetrahedron 1997, 53, 16463–16470; (e)
Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc. 1998,
1
20, 11798–11799; (f) Currie, G. S.; Drew, M. G. B.;
Harwood, L. M.; Hughes, D. J.; Luke, R. W. A.; Vickers,
R. J. J. Chem. Soc., Perkin Trans. 1 2000, 2982–2990; (g)
Jiang, B.; Yang, C.-G.; Gu, X.-H. Tetrahedron Lett. 2001,
4
2, 2545–2547; (h) Naskar, D.; Roy, A.; Seibel, W. L.;
Portlock, D. E. Tetrahedron Lett. 2003, 44, 5819–5821; (i)
Naskar, D.; Roy, A.; Seibel, W. L.; Portlock, D. E.
Tetrahedron Lett. 2003, 44, 8865–8868; (j) Chang, Y. M.;
Lee, S. H.; Nam, M. H.; Cho, M. Y.; Park, Y. S.; Yoon,
C. M. Tetrahedron Lett. 2005, 46, 3053–3056.
4
. (a) Petasis, N. A. World Patent 98-00398, 1998; (b)
Gravel, M.; Thompson, K. A.; Zak, M.; B e´ rub e´ , C.; Hall,
D. G. J. Org. Chem. 2002, 67, 3–15; (c) Koolmeister, T.;
S o¨ dergren, M.; Scobie, M. Tetrahedron Lett. 2002, 43,
5
965–5968.
5
6
. Koolmeister, T.; S o¨ dergren, M.; Scobie, M. Tetrahedron
Lett. 2002, 43, 5969–5970.
. The Petasis reaction proceeds efficiently in a variety of
different solvents. However, cases have been reported in
which a given solvent provides a particularly efficient
medium. See, for instance, Ref. 3h.
. See for instance: (a) Kelly, T. R.; Meghani, P.; Ekkundi,
V. S. Tetrahedron Lett. 1990, 31, 3381–3384; (b) Huang,
Y.; Rawal, V. H. J. Am. Chem. Soc. 2002, 124, 9662–9663;
7
(
c) Unni, A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V.
15. (a) Bentley, T. W.; Schadt, F. L.; Schleyer, P. v. R. J. Am.
Chem. Soc. 1972, 94, 992–994; (b) Bordwell, F. G. Acc.
Chem. Res. 1998, 21, 456–463; (c) Habusha, U.; Rozental,
E.; Shmaryahu, H. J. Am. Chem. Soc. 2002, 124, 15006–
H. J. Am. Chem. Soc. 2005, 127, 1336–1337.
. (a) Schadt, F. L.; Schleyer, P. v. R. Tetrahedron Lett. 1974,
2
8
335–2338; (b) Ichikawa, J.; Miyazaki, S.; Fujiwara, M.;
Minami, T. J. Org. Chem. 1995, 60, 2320–2321; (c) Das,
U.; Crousse, B.; Kesavan, V.; Bonnet-Delpon, D.; B e´ gu e´ ,
J.-P. J. Org. Chem. 2000, 65, 6749–6751; (d) Takita, R.;
Oshima, T.; Shibasaki, M. Tetrahedron Lett. 2002, 43,
15011.
À1
16. The use of HCl (1% mol ) in CH
Cl
2
led to a 30%
2
conversion of 2a, 3a and 4a after 72 h. This acid
presumably reacts with the amine to generate an ammo-
4
661–4665; (e) Iskra, J.; Bonnet-Delpon, D.; B e´ gu e´ , J.-P.
nium salt, with a pK value lower than that of HFIP.
a