Escoubet et al.
TABLE 2. r-C-H BDEs and Energies of the SOMOs of the
Corresponding r-amino Radicals Calculated for Amines 5-7 and
Acetamide 8
SCHEME 2
amine
5
6
7
8
BDE298K (kJ mol-1)
371.9
a
b
372.2
383.1
-4.3
a
b
372.4
384.5
-4.2
a
b
389.1a
382.8
a
R-amino radical SOMO (eV)
-4.5
-5.1
TABLE 3. Calculated and Experimental Values for S-H BDEs
and Energies of the SOMOs of Thiyl Radicals5
,24,13b
a
UB3P86/6-311++G (d,p)//UB3LYP/6-31G(d). b G3B3.
thiol
BuSH
MeO2CCH2SH
S-H BDE (kJ mol-1)
358.2a
364.9
a
etry.16,17 However, the values calculated by Rauk and Armstrong
by the G2(MP2) method did not confirm this trend. According
to these data, the gap between the extreme values would be
359.9b
364.4b
358.5c
363.2
c
d
3
3
60.9
70.7 ( 8.4e
-
1 18
only 2 kJ mol . Recent calculations performed by Guo are
a
RS•SOMO (eV)
-7.3
-7.7
consistent with the latter (Table 1).1
9
a
b
UB3P86/6-311++G(d,p)//UB3LYP/6-31G(d) (this work). G3B3(MP2)
The most recent experimental measurements, reported by
Lalev e´ e et al.,20 have led to the conclusion that substitution at
nitrogen has little influence on the R-C-H BDE. According to
these data, N-alkylation would stabilize the R-amino radical by
c
d
(
ref 5). G3B3 (this work). G3 calculated value at 298 K for n-BuSH
(ref 13b). e Experimental values (ref 24).
-1
less than 4 kJ mol . The additional substituent in tertiary amines
would have a negligible effect on the stability of the carbon-
centered radical.
Since none of the above-mentioned data could be transposed
directly to our series involving the formation of secondary
R-aminoalkyl radicals, R-C-H BDEs calculations were per-
formed, first at the UB3P86/6-311++G(d,p)//UB3LYP/6-31G-
(
1
d) on the series of amines 5-7 (taken as models for compounds
-3) and on acetamide 8 (selected as a model for amide 4)
21
using the Gaussian 03 package. These data are reported in
Table 2. The DFT calculations are known to underestimate the
1
9
BDE values, but they give a reliable trend in the series. Since
it was difficult to appreciate the underestimation in the absence
of experimental values, G3B3 calculations known to give BDE
values very close to the experimental ones,22 were also
performed on amines 5-7.
FIGURE 2. Preferred conformations of amines 5-7.
In agreement with the above-mentioned literature data,1
8-20
the class of the amine has little incidence on the BDE value
-
1
(less than 2 kJ mol between the primary and the tertiary
amine). It is important to note that, in this regard, they differ
from benzylic amines. The R-C-H BDEs of the latter vary
(
16) (a) Burkey, T. J.; Catelhano, A. L.; Griller, D.; Lossing, F. P. J.
-
1
within a larger range (16.4 kJ mol according to G3B3(MP2)
Am. Chem. Soc. 1983, 105, 4701-4703. (b) Griller, D.; Lossing, F. P. J.
5
Am. Chem. Soc. 1981, 103, 1586-1587.
calculations ). Owing to the lack of benzylic stabilization in
(17) The same sequence was reported by Denisov for cyclohexylamines,
the radical, the R-C-H BDEs are stronger in aliphatic amines
cf.: Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic
Compounds; CRC Press: Boca Raton, 2003; p 75 and references cited
therein. The R-CH BDEs given for cyclohexylamine, N-methyl cyclohexy-
lamine, and N,N-dimethylcyclohexylamine are 395.9, 375.9, and 368.6 kJ
-
1
than in benzylic ones by ca. 36 kJ mol in the case of the
5
primary amine (based on G3B3 calculations ). Thus, thiols
having stronger S-H bonds should be needed to achieve the
-
1
mol , respectively.
18) Wayner, D. D. M.; Clark, K. B.; Rauk, A.; Yu, D.; Armstrong, D.
A. J. Am. Chem. Soc. 1997, 119, 8925-8932.
19) Feng, Y.; Wang, J.-T.; Huang, H.; Guo, Q.-X. J. Chem. Comput.
Sci. 2003, 43, 2005-2013.
20) Lalev e´ e, J.; Allonas, X.; Fouassier, J.-P. J. Am. Chem. Soc. 2002,
24, 9613-9621.
21) Gaussian 03, Revision C.02: Frisch, M. J.; Trucks, G. W.; Schlegel,
racemization of aliphatic amines (Scheme 2).
(
-1
As expected, thiocresol (339.6 kJ mol S-H BDE according
5
(
to G3B3(MP2) calculations ) was inefficient to racemize amine
1
. The racemization experiments were performed with oc-
(
23
tanethiol, and with thioglycolic methyl ester (Table 3, n-BuSH
was selected as a model for n-OctSH).
1
(
H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.,
Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;
Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski,
V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D.
K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui,
Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.;
Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople,
J. A. Gaussian, Inc., Wallingford, CT, 2004.
The preferred conformations of the amine and the corre-
sponding R-amino radicals are shown in Figures 2 and 3.
In all cases, the preferred conformation of the amine
corresponds to the antiperiplanar arrangement of the R-C-H
25
bond and the lone pair. According to NBO calculations, the
(23) Cyclohexanethiol and 2-methylundecane-2-thiol have proved as
efficient as octanethiol in additional experiments.
(24) (a) Janousek, B. K.; Reed, K. J.; Braumann, J. I. J. Am. Chem. Soc.
-
1
1980, 102, 3125-3129. (b) A value of 358.4 kJ mol was calculated at
the G3X(MP2)-RAD//MPW1K/6-31+G(d,p) for the S-H BDE in n-PrSH;
-
1
cf. ref 7. (c) A value of 367.0 kJ mol has been used for EtSH; see:
Zavitsas, A. A.; Chatgilialoglu, C. J. Am. Chem. Soc. 1995, 117, 10645-
10654.
(25) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. ReV. 1988, 88,
899-926.
(22) Parkinson, J.; Mayer, P. M.; Radom, L. J. Chem. Soc., Perkin Trans.
2
1999, 2305-2313.
7290 J. Org. Chem., Vol. 71, No. 19, 2006