COMMUNICATIONS
Efficient Synthesis of Chiral Indolines using an Imine Reductase
terson, A. Kieltyka, R. Brodbeck, R. Primus, J. W. F.
Wasley, Bioorg. Med. Chem. Lett. 2002, 12, 3105–3109;
b) H. Zhao, X. He, A. Thurkauf, D. Hoffman, A. Kiel-
tyka, R. Brodbeck, R. Primus, J. W. F. Wasley, Bioorg.
Med. Chem. Lett. 2002, 12, 3111–3115.
Experimental Details for Bioreduction
The reaction mixture was composed of 1 mmol 3H-indole
1a, 1.5 mmol glucose, 1 mmol NADP+, 100 mg PlSIR (75 U),
10 mg BmGDH (100 U), 0.5 mL DMSO and 9.5 mL potassi-
um phosphate buffer (100 mM, pH 6.0). The reaction was
performed at 308C, and pH was automatically adjusted to
6.0 by titrating 1M NaOH solution. The reaction was termi-
nated by adding 0.5 mL NaOH (2M), and the mixture was
extracted with ethyl acetate, dried over Na2SO4, filtered and
concentrated under reduced pressure. The crude product
was purified by column chromatography eluting with petro-
leum ether and ethyl acetate (20:1 to 10:1) to afford indo-
line 2a as yellow oil; yield: 120 mg (75%).
The reaction mixture was composed of 1 mmol 3H-indole
iodide 3a, 1.5 mmol glucose, 1 mmol NADP+, 50 mg PlSIR,
50 mg BmGDH and 10 mL potassium phosphate buffer
(100 m, pH 6.0). The reaction was performed at 308C, and
pH was automatically adjusted to 6.0 by titrating 1M NaOH
solution. The reaction was terminated by adding 0.5 mL
NaOH (2M), and the mixture was extracted with ethyl ace-
tate, dried over Na2SO4, filtered and concentrated under re-
duced pressure. The crude product was purified by column
chromatography eluting with petroleum ether and ethyl ace-
tate (40:1 to 20:1) to afford indoline 4a as yellow oil; yield:
125 mg (71%).
[3] T. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010,
352, 753–819.
[4] a) P. Roth, P. G. Andersson, P. Somfai, Chem.
Commun. 2002, 1752–1753; b) J. S. Wu, F. Wang, Y. P.
Ma, X. Cui, L. F. Cun, J. Zhu, J. G. Deng, B. L. Yu,
Chem. Commun. 2006, 1766–1768; c) M. Rueping, A. P.
Antonchick, T. Theissmann, Angew. Chem. 2006, 118,
3765–3768; Angew. Chem. Int. Ed. 2006, 45, 3683–3686;
d) M. Rueping, A. P. Antonchick, Angew. Chem. 2007,
119, 4646–4649; Angew. Chem. Int. Ed. 2007, 46, 4562–
4565; e) Y. Q. Wang, C. B. Yu, D. W. Wang, X. B.
Wang, Y. G. Zhou, Org. Lett. 2008, 10, 2071–2074;
f) C. Q. Li, J. L. Xiao, J. Am. Chem. Soc. 2008, 130,
13208–13209; g) Z. Y. Han, H. Xiao, X. H. Chen, L. Z.
Gong, J. Am. Chem. Soc. 2009, 131, 9182–9183; h) F.
Chen, Z. Y. Ding, J. Qin, T. L. Wang, Y. M. He, Q. H.
Fan, Org. Lett. 2011, 13, 4348–4351; i) J. H. Xie, P. C.
Yan, Q. Q. Zhang, K. X. Yuan, Q. L. Zhou, ACS Catal.
2012, 2, 561–564; j) Z. S. Ye, R. N. Guo, X. F. Cai,
M. W. Chen, L. Shi, Y. G. Zhou, Angew. Chem. 2013,
125, 3773–3777; Angew. Chem. Int. Ed. 2013, 52, 3685–
3689.
[5] a) G. W. Zheng, J. H. Xu, Curr. Opin. Biotechnol. 2011,
22, 784–792; b) Y. Ni, J. H. Xu, Biotechnol. Adv. 2012,
30, 1279–1288.
Acknowledgements
[6] a) K. Mitsukura, M. Suzuki, S. Shinoda, T. Kuramoto,
T. Yoshida, T. Nagasawa, Biosci. Biotechnol. Biochem.
2011, 75, 1778–1782; b) K. Mitsukura, T. Kuramoto, T.
Yoshida, N. Kimoto, H. Yamamoto, T. Nagasawa, Appl.
Microbiol. Biotechnol. 2013, 97, 8079–8086; c) M. Ro-
driguez-Mata, A. Frank, E. Wells, F. Leipold, N. J.
Turner, S. Hart, J. P. Turkenburg, G. Grogan, ChemBio-
Chem 2013, 14, 1372–1379; d) P. N. Scheller, S. Fadem-
recht, S. Hofelzer, J. Pleiss, F. Leipold, N. J. Turner,
B. M. Nestl, B. Hauer, ChemBioChem 2014, 15, 2201–
2204; e) S. Hussain, F. Leipold, H. Man, E. Wells, S. P.
France, K. R. Mulholland, G. Grogan, N. J. Turner,
ChemCatChem 2015, 7, 579–583.
This work was financially supported by the National Natural
Science Foundation of China (No. 31200050 & 21472045),
Ministry of Science and Technology, P. R. China (Nos.
2011CB710800 & 2012AA022201D) and the Fundamental
Research Funds for the Central Universities (22A201514043).
We also thank Prof. Ping Tian (Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences) for his helpful dis-
cussions.
References
[7] a) F. Leipold, S. Hussain, D. Ghislieri, N. J. Turner,
ChemCatChem 2013, 5, 3505–3508; b) T. Huber, L.
Schneider, A. Prag, S. Gerhardt, O. Einsle, M. Muller,
ChemCatChem 2014, 6, 2248–2252.
[8] a) M. Espinoza-Moraga, T. Petta, M. Vasquez-Vasquez,
V. F. Laurie, L. A. B. Moraes, L. S. Santos, Tetrahedron:
Asymmetry 2010, 21, 1988–1992; b) Y. Mirabal-Gallar-
do, M. P. C. Soriano, L. S. Santos, Tetrahedron: Asym-
metry 2013, 24, 440–443.
[9] a) G. X. Zhu, X. M. Zhang, Tetrahedron: Asymmetry
1998, 9, 2415–2418; b) R. Giernoth, M. S. Krumm, Adv.
Synth. Catal. 2004, 346, 989–992; c) D. Liu, W. G. Li,
X. M. Zhang, Tetrahedron: Asymmetry 2004, 15, 2181–
2184; d) L. Q. Qiu, F. Y. Kwong, J. Wu, W. H. Lam,
S. S. Chan, W. Y. Yu, Y. M. Li, R. W. Guo, Z. Y. Zhou,
A. S. C. Chan, J. Am. Chem. Soc. 2006, 128, 5955–5965;
e) J. W. Faller, S. C. Milheiro, J. Parr, J. Organomet.
Chem. 2006, 691, 4945–4955; f) M. Rueping, C. Brink-
mann, A. P. Antonchick, I. Atodiresei, Org. Lett. 2010,
[1] a) M. E. Abbasov, D. Romo, Nat. Prod. Rep. 2014, 31,
1318–1327; b) Z. W. Zuo, W. Q. Xie, D. W. Ma, J. Am.
Chem. Soc. 2010, 132, 13226–13228; c) R. J. Reddy, N.
Kawai, J. Uenishi, J. Org. Chem. 2012, 77, 11101–
11108; d) A. W. Schammel, G. Chiou, N. K. Garg, Org.
Lett. 2012, 14, 4556–4559; e) C. R. Edwankar, R. V. Ed-
wankar, O. A. Namjoshi, X. B. Liao, J. M. Cook, J. Org.
Chem. 2013, 78, 6471–6487; f) T. Ideguchi, T. Yamada,
T. Shirahata, T. Hirose, A. Sugawara, Y. Kobayashi, S.
Omura, T. Sunazuka, J. Am. Chem. Soc. 2013, 135,
12568–12571; g) W. Lin, T. Cao, W. Fan, Y. Han, J.
Kuang, H. Luo, B. Miao, X. Tang, Q. Yu, W. Yuan, J.
Zhang, C. Zhu, S. Ma, Angew. Chem. 2014, 126, 281–
285; Angew. Chem. Int. Ed. 2014, 53, 277–281; h) S.
Arai, M. Nakajima, A. Nishida, Angew. Chem. 2014,
126, 5675–5678; Angew. Chem. Int. Ed. 2014, 53, 5569–
5572.
[2] a) H. Zhao, A. Thurkauf, X. He, K. Hodgetts, X.
Zhang, S. Rachwal, R. X. Kover, A. Hutchison, J. Pe-
Adv. Synth. Catal. 2015, 357, 1692 – 1696
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1695