A. Itoh et al. / Phytochemistry 69 (2008) 1208–1214
1213
NMR (CD3OD) d 1.07 (1H, d, J = 6.5 Hz, H-10), 1.74 (1H,
ddd, J = 14.5, 8.0, 5.0 Hz, H-6), 2.07 (1H, td, J = 9.0,
5.0 Hz, H-9), 2.10–2.18 (1H, m, H-8), 2.29 (1H, ddd,
J = 14.5, 7.5, 1.5 Hz, H-6), 2.30 (1H, dd, J = 16.5,
9.0 Hz, H-600), 2.81 (1H, br dt, J = 9.0, 5.0 Hz, H-900),
2.91 (1H, dd, J = 16.5, 4.0 Hz, H-600), 3.11 (1H, br q,
J = 8.0 Hz, H-5), 3.20, 3.22 (2H, each dd, J = 9.0, 8.0 Hz,
H-20, 2000), 3.26-3.38 (2H, m, H-50, 5000), 3.27, 3.28 (2 H, each
br t, J = 9.0 Hz, H-40, 4000), 3.28-3.38 (1 H, m, H-500), 3.36,
3.37 (2H, each t, J = 9.0 Hz, H-30, 3000), 3.66, 3.67 (2H, each
dd, J = 12.0, 6.0 Hz, H-60, 6000), 3.69 (3H, s, OMe), 3.89,
3.90 (2H, each dd, J = 12.0, 2.0 Hz, H-60, 6000), 4.66 (1H,
d, J = 8.0 Hz, H-10), 4.68 (1H, d, J = 8.0 Hz, H-1000), 5.20
(1H, br t, J = 5.5 Hz, H-7), 5.23 (1H, dd, J = 10.0,
1.5 Hz, H-1000), 5.27 (1H, dd, J = 17.0, 1.0 Hz, H-1000),
5.28 (1H, d, J = 5.0 Hz, H-1), 5.50 (1H, d, J = 4.5 Hz, H-
100), 5.66 (1H, br dt, J = 17.0, 10.0 Hz, H-800), 7.24 (1H, d,
J = 1.5 Hz, H-3), 7.49 (1H, d, J = 2.0 Hz, H-300); 13C
NMR (CD3OD) d 13.9 (C-10), 29.1 (C-500), 32.7 (C-5),
35.3 (C-600), 40.4 (C-6), 41.4 (C-8), 45.4 (C-900), 47.2 (C-9),
51.8 (OMe), 62.8 (C-60, 6000), 71.6, 71.7 (C-40, 4000), 74.7,
74.8 (C-20, 2000), 78.1 (C-30, 3000), 78.3 (C-7), 78.5 (C-50, 5000),
97.6 (C-1), 97.7 (C-100), 100.1 (C-1000), 100.3 (C-10), 110.5
(C-400), 113.3 (C-4), 120.6 (C-1000), 134.5 (C-800), 152.7 (C-
3), 153.7 (C-300), 168.0 (C-1100), 169.5 (C-11), 176.1 (C-700);
HMBC: H-1 to C-3, 5; H-3 to C-1, 4, 5, 11; H-5 to C-6,
9, 11; H-6 to C-5; H-7 to C-5, 9, 1100; H-8 to C-9; H-9 to
C-8, 10; H-10 to C-8, 9; H-100 to C-300, 500; H-300 to C-100,
400, 500, 1100; H-500 to C-700, 1100; H-600 to C-400, 500, 700, 900; H-
900 to C-400, 500, 800; H-1000 to C-900; OMe to C-11; H-10 to
C-1; H-1000 to C-100; negative ion SIMS m/z 761 [M–H]ꢀ,
599, 389; negative ion HRSIMS m/z 761.2503 (calcd for
C33H45O20, 761.2506).
Pharmaceutical University) for MS measurements. This re-
search was financially supported by Kobe Pharmaceutical
University Collaboration Fund.
References
Arbain, D., Putra, D.P., Sargent, M.V., 1993. The alkaloids of Ophiorrh-
iza filistipula. Aust. J. Chem. 46, 977–985.
Bisset, N.G., 1980. In: Phillipson, J.D., Zenk, M.H. (Eds.), Indole and
Biogenetically Related Alkaloids. Academic Press, New York (Chapter
3).
´ ´
Brandt, V., Tits, M., Geerlings, A., Frederich, M., Penelle, J., Delaude, C.,
Verpoorte, R., Angenot, L., 1999. b-Carboline glucoalkaloids from
Strychnos mellodora. Phytochemistry 51, 1171–1176.
Challice, J.S., Williams, A.H., 1968. Phenolic compounds of the genus
Pyrus. I. Occurrence of flavones and phenolic acid derivatives of 3,4-
dihydroxybenzyl alcohol 4-glucoside in Pyrus calleryana. Phytochem-
istry 7, 119–130.
Challice, J.S., Loeffler, R.S.T., Williams, A.H., 1980. Phenolic compounds
of the genus Pyrus. Part 8. Structure of calleryanin and its benzylic
esters from Pyrus and Prunus. Phytochemistry 19, 2435–2437.
Damtoft, S., Franzyk, H., Jensen, S.R., 1997. Iridoid glucosides from
Picconia excelsa. Phytochemistry 45, 743–750.
Duynstee, H.I., De Koning, M.C., Van der Marel, G.A., Van Boom, J.H.,
1999. An expeditious route to the synthesis of kelampayosides A and
B. Tetrahedron 55, 9881–9898.
Hara, S., Okabe, H., Mihashi, K., 1986. Separation of aldose
enantiomers by gas–liquid chromatography. Chem. Pharm. Bull.
34, 1843–1845.
Ida, Y., Satou, T., Ohtsuka, M., Nagasao, M., Shoji, J., 1994. Phenolic
constituents of Phellodendron amurense bark. Phytochemistry 35, 209–
215.
Itoh, A., Tanahashi, T., Nagakura, N., Nishi, T., 2003. Two chromone-
secoiridoid glycosides and three indole alkaloid glycosides from
Neonauclea sessilifolia. Phytochemistry 62, 359–369.
Itoh, A., Oya, N., Kawaguchi, E., Nishio, S., Tanaka, Y., Kawachi, E.,
Akita, T., Nishi, T., Tanahashi, T., 2005. Secoiridoid glucosides from
Strychonos spinosa. J. Nat. Prod. 68, 1434–1436.
Itoh, A., Tanaka, Y., Nagakura, N., Nishi, T., Tanahashi, T., 2006. A
quinic acid ester from Strychonos lucida. J. Nat. Med. 60, 146–148.
Jensen, S.R., Mikkelsen, C.B., Nielsen, B.J., 1981. Iridoids in Loasaceae.
Part I. Iridoid mono- and di-glycosides in Mentzelia. Phytochemistry
20, 71–83.
Kitajima, J., Ishikawa, T., Tanaka, Y., Ono, M., Ito, Y., Nohara, T.,
1998. Water-soluble constituents of fennel. V. Glycosides of aromatic
compounds. Chem. Pharm. Bull. 46, 1587–1590.
Kobayashi, H., Karasawa, H., Miyase, T., Fukushima, S., 1985. Studies
on the constituents of cistanchis herba. V. Isolation and structures of
two new phenylpropanoid glycosides, cistanosides E and F. Chem.
Pharm. Bull. 33, 1452–1457.
4.10. Acid hydrolysis of compounds 1-6
Each compound (1 mg) was heated at 95 °C with diox-
ane (0.5 mL) and 5% H2SO4 (0.5 mL) for 1 h. After neu-
tralization with Amberlite IRA-400 (OHꢀ form), each
reaction mixture was concentrated and the residue was
passed through a Sep-Pak C18 cartridge with H2O. The elu-
ate was concentrated and the residue was treated with L-
cysteine methyl ester hydrochloride (1 mg) in pyridine
(0.125 mL) at 60 °C for 1 h. The solution was then treated
with N,O-bis(trimethylsilyl)trifluoroacetamide (0.05 mL) at
60 °C for 1 h. The supernatant was applied to GLC; GLC
´
´
´
Kocsis, A., Szabo, L.F., Podanyi, B., 1993. New bis-iridoids from
Dipsacus laciniatus. J. Nat. Prod. 56, 1486–1499.
Lami, N., Kadota, S., Kikuchi, T., Momose, Y., 1991. Constituents of the
roots of Boerhaavia diffusa L. III. Identification of calcium channel
antagonistic compound from the methanol extract. Chem. Pharm.
Bull. 39, 1551–1555.
Ma, W.-G., Wang, D.-Z., Zeng, Y.-L., Yang, C.-R., 1992. Iridoidal
glycosides from Triplostegia grandiflora. Yunnan Zhiwu Yanjiu 14, 92–
96.
TM
conditions: column, Supelco SPB -1, 30 m ꢂ 0.25 mm; col-
umn temperature, 230 °C; N2 flow rate, 0.8 mL/min; tR of
derivatives, D-glucose 12.9 min, L-glucose 13.5 min, D-api-
ose 7.2 min. D-Glucose and D-apiose were detected from
1–3 and D-glucose was detected from 4–6.
Nakamoto, K., Otsuka, H., Yamasaki, K., 1988. 7-O-Acetyl loganic acid
from Alangium platanifolium var. trilobum. Phytochemistry 27, 1856–
1858.
Perry, L.M., 1980. In: Medicinal Plants of East and Southeast Asia. The
MIT Press, Massachusetts, p. 245.
Acknowledgments
Our thanks go to Dr. M. Sugiura (Kobe Pharmaceutical
University) for NMR spectra and to Dr. K. Saiki (Kobe
Sugiyama, M., Kikuchi, M., 1991. Studies on the constituents of
Osmanthus species. VII. Structures of lignan glycosides from the