we envisioned that pyrrolidine derivatives would be obtained
in better yields from methylenecyclopropanes and TsNH2
under the catalysis of gold(I) salt, a powerful soft Lewis
acid.6 Herein, we wish to report gold(I)-catalyzed domino
ring-opening ring-closing hydroamination of methylenecy-
clopropanes with sulfonamides, a facile synthetic route to
pyrrolidine derivatives 3 (Scheme 1).
catalyst, we investigated the hydroamination of methylenecy-
clopropane 1a with TsNH2 (1.0 equiv). As we expected, the
corresponding pyrrolidine derivative 3a was obtained in good
yield (70%) after 12 h in toluene at 85 °C (Table 1, entry
Table 1. Hydroamination of MCP 1a (0.5 mmol) with TsNH2
(0.5 mmol) in Toluene (2.0 mL)
Scheme 1. Envisioned Reaction Pathway of Au(I)-Catalyzed
Hydroamination of MCPs with TsNH2
yield (%)
entry
catalyst (mol %)
solvent
2a
3a
4a
1
2
3
Au(PPh3)Cl (5), AgOTf (5)
TfOH (10)
TfOH (2)b
toluene trace 70
toluene trace 48 trace
toluene trace 10
4
5
6
7
8
9
10
11
12
13
14
15
Sn(OTf)2 (10)
In(OTf)3 (10)
Yb(OTf)3 (10)
Sc(OTf)3 (10)
BF3‚OEt2 (10)
Au(PPh3)Cl (5)
AgOTf (5)
Au(PPh3)Cl (5), AgSbF6 (5) toluene trace 51
Au(PPh3)(NTf2 (5)
Au(PPh3)Cl (5), AgOTf (5)
Au(PPh3)Cl (5), AgOTf (5)
Au(PPh3)Cl (5), AgOTf (5)
toluene 11
toluene 24
toluene 56
toluene 34
toluene 47
toluene
36 20
22 15
6
18
8
16 trace
toluene 72
toluene
DCE
trace 61
In our initial experiment using Au(PPh3)OTf, prepared
from equal equivalents of Au(PPh3)Cl and AgOTf, as the
CH3CN
THF
a Isolated yields. b 54% of 1a was recovered.
(4) (a) Chen, Y.; Shi, M. J. Org. Chem. 2004, 69, 426-431. For other
papers on hydroamination of MCPs, see: (b) Nakamura, I.; Itakagi, H.;
Yamamoto, Y. J. Org. Chem. 1998, 63, 6458-6459. (c) Smolensky, E.;
Kapon, M.; Eisen, M. S. Organometallics 2005, 24, 5495-5498. (d) Ryu,
J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 12584-12605.
(e) Siriwardan, A. I.; Kamada, M.; Nakamura, I.; Yamamoto, Y. J. Org.
Chem. 2005, 70, 5932-5937.
(5) (a) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128,
1798-1799. For other papers on gold-catalyzed inter- or intramolecular
hydroamination of unsaturated compounds, see: (b) Fukuda, Y.; Utimoto,
K.; Nozake, H. Heterocycles 1987, 25, 297-300. (c) Arcadi, A.; Giuseppe,
S. D.; Marinelli, F.; Rossi, E. AdV. Synth. Catal. 2001, 343, 443-446. (d)
Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349-3352.
(e) Brouwer, C.; He, C. Angew. Chem., Int. Ed. 2006, 45, 1744-1747. (f)
Han, X.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2006, 45, 1747-
1749. (g) Nishina, N.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45,
3314-3317. (h) Patil, N. T.; Lutete, L. M.; Nishina, N.; Yamamoto, Y.
Tetrahedron Lett. 2006, 47, 4749-4751.
(6) For recent reviews on gold-catalyzed reactions, see: (a) Hashmi, A.
S. K. Angew. Chem., Int. Ed. 2005, 44, 6990-6993. (b) Hashmi, A. S. K.
Gold Bull. 2004, 37, 51-65. (c) Arcadi, A.; Giuseppe, S. D. Curr. Org.
Chem. 2004, 8, 795-812. (d) Hashmi, A. S. K. Gold Bull. 2003, 36, 3-9.
(e) Dyker, G. Angew. Chem., Int. Ed. 2000, 39, 4237-4239. (f) Hoffmann-
Ro¨der, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387-391. Selected
examples: (g) Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J. Am. Chem.
Soc. 2004, 126, 8654-8655. (h) Sherry, B. D.; Toste, F. D. J. Am. Chem.
Soc. 2004, 126, 15978-15979. (i) Yao, T.; Zhang, X.; Larock, R. J. J. Am.
Chem. Soc. 2004, 126, 11164-11165. (j) Zhang, L.; Kozmin, S. A. J. Am.
Chem. Soc. 2004, 126, 11806-11807. (k) Hashmi, A. S. K.; Weyrauch, J.
P. Org. Lett. 2004, 6, 4391-4397. (l) Shi, Z.; He, C. J. Org. Chem. 2004,
69, 3669-3671. (m) Shi, Z.; He, C. J. Am. Chem. Soc. 2004, 126, 5964-
5965. (n) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962-
6963. (o) Nieto-Oberhuber, C.; Lo´pez, S.; Muno˜z, M. P.; Ca´rdenas, D. J.;
Bunuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2005,
44, 6146-6148. (p) Nieto-Oberhuber, C.; Lo´pez, S.; Echavarren, A. M. J.
Am. Chem. Soc. 2005, 127, 6178-6169. (q) Nguyen, R.-V.; Yao, X.; Li,
C.-J. Org. Lett. 2006, 8, 2397-2399. (r) Jung, H. H.; Floreancig, P. E.
Org. Lett. 2006, 8, 1949-1951. (s) Genin, E.; Toullec, P. Y.; Antoniotti,
S.; Brancour, C.; Gen, T, J.-P.; Michelet, V. J. Am. Chem. Soc. 2006, 128,
3112-3113.
1). Though a trace of ring-opening product 2a was detected
by TLC analysis, none of the dialkylated product 4a was
formed. Meanwhile, the Brønsted acid trifluoromethane-
sulfonic acid (TfOH) and various other Lewis acids including
Au(PPh3)Cl and Au(PPh3)Cl with AgSbF6 were tested in this
reaction under identical conditions. As can be seen from
Table 1, TfOH could also catalyze the reaction but led to 3a
in lower yield (Table 1, entry 2). When 2 mol % of TfOH
was used as the catalyst for a control experiment, product
3a was isolated in only 10% yield along with the recovery
of 54% of the starting materials (Table 1, entry 3). Other
Lewis acids, such as Sn(OTf)2, In(OTf)3, Yb(OTf)3, Sc-
(OTf)3, and BF3‚Et2O, could promote the ring-opening
reaction of 1a with TsNH2 to give the corresponding product
2a as the major one along with the formation of product 4a
in low yields in most cases. However, these Lewis acids were
not as efficient as gold(I) catalyst in the subsequent intramo-
lecular ring-closing hydroamination of 2a to afford pyrro-
lidine derivative 3a under identical conditions (Table 1,
entries 4-8). If Au(PPh3)Cl was used as a sole catalyst, no
reaction occurred (Table 1, entry 9). On the other hand,
AgOTf could only promote the ring-opening reaction of 1a
to give 2a in 72% yield (Table 1, entry 10). When AgSbF6
was used as the dechlorinating reagent instead of AgOTf,
3a was obtained in 51% yield under identical conditions
(Table 1, entry 11). Au(PPh3)NTf2, an air-stable gold(I)
complex,7 was also applied to the reaction as the catalyst
4044
Org. Lett., Vol. 8, No. 18, 2006