Full Paper
[18] P.-H. Lanoë, C. M. Tong, R. W. Harrington, M. R. Probert, W. Clegg, J. A. G.
Williams, V. N. Kozhevnikov, Chem. Commun. 2014, 50, 6831–6834.
[19] D. G. Congrave, Y.-T. Hsu, A. S. Batsanov, A. Beeby, M. R. Bryce, Dalton
Trans. 2018, 47, 2086–2098.
[20] G. Li, D. G. Congrave, D. Zhu, Z. Su, M. R. Bryce, Polyhedron 2018, 140,
146–157.
Electrochemical Measurements. Cyclic voltammetry (CV) was per-
formed on a CHI 1210B electrochemical workstation, with a glassy
carbon electrode as the working electrode, a platinum wire as the
counter electrode, an Ag/Ag+ electrode as the reference electrode,
and 0.1 M n-Bu4NClO4 as the supporting electrolyte.
[21] X. Yang, X. Xu, J. S. Dang, G. Zhou, C. L. Ho, W. Y. Wong, Inorg. Chem.
2016, 55, 1720–1727.
[22] F. Lafolet, S. Welter, Z. Popović, L. De Cola, J. Mater. Chem. 2005, 15,
2820–2828.
[23] L. Donato, C. E. McCusker, F. N. Castellano, E. Zysman-Colman, Inorg.
Chem. 2013, 52, 8495–8504.
[24] G. Li, Y. Wu, G. Shan, W. Che, D. Zhu, B. Song, L. Yan, Z. Sua, M. R. Bryce,
Chem. Commun. 2014, 50, 6977–6980.
[25] V. Chandrasekhar, S. M. W. Rahaman, T. Hajra, D. Das, T. Ghatak, S. Rafiq,
P. Sen, J. K. Bera, Chem. Commun. 2011, 47, 10836–10838.
[26] G.-N. Li, Y. Zou, Y.-D. Yang, J. Liang, F. Cui, T. Zheng, H. Xie, Z.-G. Niu, J.
Fluoresc. 2014, 24, 1545–1552.
Computational Details. All calculations were carried out with
Gaussian 09 software package.[54] The density functional theory
(DFT) and time-dependent DFT (TDDFT) were employed with no
symmetry constraints to investigate the optimized geometries and
electron configurations with the Becke three-parameter Lee-Yang-
Parr (B3LYP) hybrid density functional theory.[55–57] Unrestricted DFT
method was used to optimize the triplet state geometries. The
LANL2DZ basis set was used to treat the Ir atom, whereas the
6–31G* basis set was used to treat C, H, N and F atoms. Solvent
effects were considered within the SCRF (self-consistent reaction
field) theory using the polarized continuum model (PCM) approach
to model the interaction with the solvent.[5859]
[27]
G.-N. Li, S.-B. Dou, T. Zheng, X.-Q. Chen, X.-H. Yang, S. Wang, W. Sun, G.-
Y. Chen, Z.-R. Mo, Z.-G. Niu, Organometallics 2018, 37, 78–86.
[28] Z.-G. Niu, L.-P. Yan, L. Wu, G.-Y. Chen, W. Sun, X. Liang, Y.-X. Zheng, G.-N.
Li, J.-L. Zuo, Dyes Pigm. 2018, 162, 863–871.
[29] H. J. Bae, J. Chung, H. Kim, J. Park, K. M. Lee, T.-W. Koh, Y. S. Lee, S. Yoo,
Y. Do, M. H. Lee, Inorg. Chem. 2014, 53, 128–138.
[30] M. Xu, G. Wang, R. Zhou, Z. An, Q. Zhou, W. Li, Inorg. Chim. Acta 2007,
360, 3149–3154.
[31] A. E. Wendlandt, S. S. Stahl, J. Am. Chem. Soc. 2014, 136, 506–512.
[32] M. Nonoyama, Bull. Chem. Soc. Jpn. 1974, 47, 767–768.
[33] P. M. Griffiths, F. Loiseau, F. Puntoriero, S. Serroni, S. Campagna, Chem.
Commun. 2000, 2297–2298.
Acknowledgments
This work was supported by the National Natural Science Foun-
dation of China (21501037), the Natural Science Foundation of
Hainan Province (218QN236), the 2017 Hainan Normal Univer-
sity's Innovation Experiment Program for University Students-
China and Program for Innovative Research Team in University
(IRT-16R19).
[34] L. He, J. Qiao, L. Duan, G. Dong, D. Zhang, L. Wang, Y. Qiu, Adv. Funct.
Mater. 2009, 19, 2950–2960.
Keywords: Iridium · Dinuclear complexes · Conjugated
ligands · Phosphorescence
[35] Z.-G. Niu, H.-B. Han, M. Li, Z. Zhao, G.-Y. Chen, Y.-X. Zheng, G.-N. Li, J.-L.
Zuo, Organometallics 2018, 37, 3154–3164.
[36] J. Dai, K. F. Zhou, M. Li, H. Q. Sun, Y. Q. Chen, S. J. Su, X. M. Pu, Y. Huang,
Z. Y. Lu, Dalton Trans. 2013, 42, 10559–10571.
[37] K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1985, 107, 1431–
1432.
[1] Y. S. Li, J. L. Liao, K. T. Lin, W. Y. Hung, S. H. Liu, G. H. Lee, P. T. Chou, Y.
Chi, Inorg. Chem. 2017, 56, 10054−10060.
[2] K. T. Kamtekar, A. P. Monkman, M. R. Bryce, Adv. Mater. 2010, 22, 572–
582.
[3] K. K. W. Lo, M. W. Louie, K. Y. Zhang, Coord. Chem. Rev. 2010, 254, 2603–
2622.
[4] L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura, F. Barigelletti, Top. Curr.
Chem. 2007, 281, 143–203.
[5] E. Baranoff, E. Orselli, L. Allouche, D. DiCenso, R. Scopelliti, M. Gr€atzel,
M. K. Nazeeruddin, Chem. Commun. 2011, 47, 2799–2801.
[6] M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature 2000, 403, 750–753.
[7] E. Matteucci, A. Baschieri, A. Mazzanti, L. Sambri, J. Avila, A. Pertegas,
H. J. Bolink, F. Monti, E. Leoni, N. Armaroli, Inorg. Chem. 2017, 56, 10584–
10595.
[38] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454–464.
[39] S. Hirata, M. Head-Gordon, Chem. Phys. Lett. 1999, 314, 291–299.
[40] D. Escudero, D. Jacquemin, Dalton Trans. 2015, 44, 8346–8355.
[41] Y. S. Yeh, Y. M. Cheng, P. T. Chou, G. H. Lee, C. H. Yang, Y. Chi, C. F. Shu,
C. H. Wang, ChemPhysChem 2006, 7, 2294–2297.
[42] D. Escudero, W. Thiel, Inorg. Chem. 2014, 53, 11015–11019.
[43] Q. L. Xu, C. C. Wang, T. Y. Li, M. Y. Teng, S. Zhang, Y. M. Jing, X. Yang,
W. N. Li, C. Lin, Y. X. Zheng, J. L. Zuo, X. Z. You, Inorg. Chem. 2013, 52,
4916–4925.
[44] Z.-G. Niu, T. Zheng, Y.-H. Su, P.-J. Wang, X.-Y. Li, F. Cui, J. Liang, G.-N. Li,
New J. Chem. 2015, 39, 6025–6033.
[45] L. F. Gildea, J. A. G. Williams, Iridium and platinum complexes for OLEDs,
in Organic Light–Emitting Diodes: Materials, Devices and Applications, ed.
A. Buckley, Woddhead, Cambridge, 2013.
[8] T.-Y. Li, J. Wu, Z.-G. Wu, Y.-X. Zheng, J.-L. Zuo, Y. Pan, Coord. Chem. Rev.
2018, 374, 55–92.
[46] S. C. Lo, E. B. Namdas, P. L. Burn, I. D. W. Samuel, Macromolecules 2003,
36, 9721–9730.
[47] E. A. Plummer, J. W. Hofstraat, L. De Cola, Dalton Trans. 2003, 2080–2084.
[48] B. P. Straughan, S. S. Walker. Spectroscopy, 2nd ed.; Chapman andHall:
London, 1976, Vol. 3.
[9] A. F. Henwood, E. Zysman-Colman, Chem. Commun. 2017, 53, 807–826.
[10] Y.-J. Cho, S.-Y. Kim, C. M. Choi, N. J. Kim, C. H. Kim, D. W. Cho, H.-J. Son,
C. Pac, S. O. Kang, Inorg. Chem. 2017, 56, 5305–5315.
[11] B. Balónová, D. R. Martir, E. R. Clark, H. J. Shepherd, E. Zysman-Colman,
B. A. Blight, Inorg. Chem. 2018, 57, 8581–8587.
[49] V. Chandrasekhar, T. Hajra, J. K. Bera, S. M. W. Rahaman, N. Satumtira, O.
Elbjeirami, M. A. Omary, Inorg. Chem. 2012, 51, 1319–1329.
[50] CrysAlisPro Version 1.171.36.21. Agilent Technologies Inc. Santa Clara,
CA, USA, 2012.
[51] L. Palatinus, G. J. Chapuis, J. Appl. Crystallogr. 2007, 40, 786–790.
[52] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122.
[53] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. J.
Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
[54] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Na-
katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.
Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
[12] S. Bettington, M. Tavasli, M. R. Bryce, A. S. Batsanov, A. L. Thompson,
H. A. Al-Attar, F. B. Dias, A. P. Monkman, J. Mater. Chem. 2006, 16, 1046–
1052.
[13] X. Li, D. Zhang, W. Li, B. Chu, L. Han, T. Li, Z. Su, J. Zhu, Y. Chen, Z. Hu, P.
Lei, Z. Zhang, Opt. Mater. 2009, 31, 1173–1176.
[14] A. Auffrant, A. Barbieri, F. Barigelletti, J. Lacour, P. Mobian, J.-P. Collin, J.-
P. Sauvage, B. Ventura, Inorg. Chem. 2007, 46, 6911–6919.
[15] Y. Zheng, A. S. Batsanov, M. A. Fox, H. A. Al-Attar, K. Abdullah, V. Jankus,
M. R. Bryce, A. P. Monkman, Angew. Chem. Int. Ed. 2014, 53, 11616–11619;
Angew. Chem. 2014, 126, 11800.
[16] R. E. Daniels, S. Culham, M. Hunter, M. C. Durrant, M. R. Probert, W. Clegg,
J. A. G. Williams, V. N. Kozhevnikov, Dalton Trans. 2016, 45, 6949–6962.
[17] V. W.-W. Yam, K. M.-C. Wong, Chem. Commun. 2011, 47, 11579–11592.
Eur. J. Inorg. Chem. 0000, 0–0
8
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim