BULLETIN OF THE
Communication
KOREAN CHEMICAL SOCIETY
6
0.4 kJ/mol, respectively). Accordingly, a similar trend was
11. T. Ohkuma, M. Koizumi, H. Doucet, T. Pham, M. Kozawa,
K. Murata, E. Katayama, T. Yokozawa, T. Ikariya, R. Noyori,
J. Am. Chem. Soc. 1998, 120, 13529.
observed for catalytic activity, where Hf-Beta showed better
performance over Sn- and Zr-Beta catalysts. Despite the sim-
ilar ionic radii of Zr and Hf (0.73 Å and 0.72 Å), the better
performance of Hf-MOF-808 could be related to the slightly
stronger Lewis acidic character of Hf (relative to that of Zr);
however, a detailed investigation is essential to support this
claim. For this, FTIR analysis using reliable probe molecules
would be highly desirable for calculating the exact amount
and strength of Lewis acid, and the base sites.
In summary, both Zr-MOF-808 and Hf-MOF-808 were
found to be active and chemoselective catalysts for the CTH
reaction of α, β-unsaturated carbonyl compounds. The selec-
tivity to all allylic alcohols was >97% throughout the reac-
tion. Excellent conversions were always paired with high
selectivity. The slightly better performance of Hf-MOF-808
1
1
1
1
2. G. Borah, P. P. Sarmah, D. Boruah, Bull. Kor. Chem. Soc.
2
015, 36, 1226.
3. Y. Gao, J. Wang, A. Han, S. Jaenicke, G. K. Chuah, Catal.
Sci. Technol. 2016, 6, 3806.
4. G. K. Chuah, S. Jaenicke, Y. Z. Zhu, S. H. Liu, Curr. Org.
Chem. 2006, 10, 1639.
5. S. H. Liu, S. Jaenicke, G. K. Chuah, J. Catal. 2002, 206, 321.
16. M. De bruyn, D. E. De Vos, P. A. Jacobs, Adv. Synth. Catal.
2002, 344, 1120.
17. Y. Zhu, S. Liu, S. Jaenicke, G. Chuah, Catal. Today 2004,
9
7, 249.
1
1
2
2
2
2
2
8. A. Ramanathan, C. Villalobos, M. C. Kwakernaak, C.
Telalovic, S. Hanefeld, Chem.-A Eur. J. 2008, 14, 961.
9. C. Battilocchio, J. M. Hawkins, S. V. Ley, Org. Lett. 2013,
1
5, 2278.
(compared to Zr-MOF-808) could be due to the superior
0. J. Wang, K. Okumura, S. Jaenicke, G.-K. Chuah, Appl. Catal.
A Gen. 2015, 493, 112.
1. B. R. Kim, J. S. Oh, J. Kim, C. Y. Lee, Bull. Kor. Chem. Soc.
Lewis acidic and basic characteristics of Hf-MOF-808 rela-
tive to those of Zr-MOF-808; however, detailed characteriza-
tions will be required to confirm this point.
2
015, 36, 2799.
2. M. S. Jang, Y. R. Lee, W. S. Ahn, Bull. Kor. Chem. Soc.
015, 36, 363.
Acknowledgments. This work was supported by Korea
Institute of Energy Technology Evaluation and Planning
2
3. J. S. Oh, K. C. Park, G. Gupta, C. Y. Lee, Bull. Kor. Chem.
Soc. 2019, 40, 128.
4. Y. Kuk, S. Ahmed, H. J. Sun, J. Shim, G. Park, Bull. Kor.
Chem. Soc. 2020, 41, 310.
(
(
KETEP) and the Ministry of Trade, Industry and Energy
MOTIE) of the republic of Korea (No. 20202020800330).
A.H.V. and Y.K.H. are deeply grateful to the Institutional
Research Program of KRICT (SI2111-40) for financial sup-
port. The authors would like to thank Dr. U-H. Lee, D.-Y.
Hong, and Dr. D. W. Hwang for helpful discussions.
25. F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde,
M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M.
Waroquier, V. Van Speybroeck, J. Am. Chem. Soc. 2013,
1
35, 11465.
6. E. Plessers, D. E. De Vos, M. B. J. Roeffaers, J. Catal. 2016,
40, 136.
7. E. Plessers, G. Fu, C. Y. X. Tan, D. E. De Vos, M. B. J.
Roeffaers, Catalysts 2016, 6, 104.
8. A. H. Valekar, K.-H. Cho, S. K. Chitale, D.-Y. Hong, G.-Y.
Cha, U.-H. Lee, D. W. Hwang, C. Serre, J.-S. Chang, Y. K.
Hwang, Green Chem. 2016, 18, 4542.
Supporting Information. Additional supporting informa-
tion is available in the online version of this article.
2
2
2
3
References
1
2
3
. U. K. Singh, M. A. Vannice, Appl. Catal. A 2001, 213, 1.
. C. Mohr, P. Claus, Sci. Prog. 2001, 84, 311.
. C. Mohr, N. Hofmeister, M. Lucas, P. Claus, Chem. Eng.
Technol. 2000, 23, 324.
. J. E. Bailie, G. J. Hutchings, Chem. Commun. 1999, 2151.
. R. S. Khairi, T. Hara, N. Ichikunia, S. Shimazu, Catal. Sci.
Technol. 2012, 2, 2139.
2
9. A. H. Valekar, M. Lee, J. W. Yoon, J. Kwak, D.-Y. Hong,
K.-R. Oh, G.-Y. Cha, Y.-U. Kwon, J. Jung, J.-S. Chang,
Y. K. Hwang, ACS Catal. 2020, 10, 3720.
4
5
3
0. H. Furukawa, F. Gandara, Y.-B. Zhang, J. Jiang, W. L.
Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 2014,
1
36, 4369.
1. Y. Liu, R. C. Klet, J. T. Huppa, O. Farha, Chem. Commun.
016, 52, 7806.
2. S. Rojas-Buzo, P. Garcia-Garcia, A. Corma, ChemSusChem
018, 11, 432.
3. R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp, O. K. Farha,
J. Mater. Chem. A 2016, 4, 1479.
4. M. Koehle, R. F. Lobo, Catal. Sci. Technol. 2016,
6
. W. Schwab, R. Davidovich-Rikanati, E. Lewinsohn, Plant J.
3
3
3
3
2
008, 54, 712.
2
7
8
. B. De Preville, Perf. Flav 2006, 31, 36.
. Y. Yuan, S. Yao, M. Wang, S. Lou, N. Yan, Curr. Org.
Chem. 2013, 17, 400.
. H.-D. Belitz, W. Grosch, P. Schieberle, Food Chemistry,
Springer, Berlin, 2009.
2
9
1
0. S. R. Rao, G. A. Ravishankar, J. Sci. Food Agric. 2000,
0, 289.
6
, 3018.
8
Bull. Korean Chem. Soc. 2021, Vol. 42, 467–470
© 2021 Korean Chemical Society, Seoul & Wiley-VCH GmbH
www.bkcs.wiley-vch.de
470